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1 Basics

1.1 The specific heat capacity of a solid state body

According to the first theorem of thermodynamics the change of the internal energy dU in a
closed system is obtained by

dU = δQ + δW,

dU = TdS − pdV,

in which the following quantities occur:

• δQ: The heat, which is feed into or removed from the system and which can be expressed
by the change of the entropy dS and temperature T of the system.

• δW : The work, which is done by the system and wich can be described by the change of
volume dV and the pressure p in the system.

The quantities p, S, T and V are state variables of the system at this juncture.
Based on the first theorem of thermodynamics it is now possible to define the so-called heat
capacity universally

CX =

(
∂Q

∂T

)
X

which is a measure for the change of heat due to the change of temperature.
Since state variables like the pressure p or volumen V are changed during a temperature change
normally heat capacities are used in which one of these state variables is fixed. This is revealed
by the index X . Thus it follows

Cp =

(
∂Q

∂T

)
p

CV =

(
∂Q

∂T

)
V

Furthermore the so-called specific heat capacity cX is introduced by obtaining the predefined
heat capacity CX considering the amount of substance n of the given substance and applying it
to one mole:

cx =
CX
n

=
1

n

(
∂Q

∂T

)
X

⇒ cp =
Cp
n

=
1

n

(
∂Q

∂T

)
p

⇒ cV =
CV
n

=
1

n

(
∂Q

∂T

)
V
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The specific heat capacities cp and cV are connected with each other by the relation

R = cV − cp,

at which R is the universal gas constant.
In solid state bodies the difference between both heat capacities cp and cV is small hence the
discrepency will be neglected in the future.
At last assuming that the Volumen is constant and therefore dV = 0 the specific heat can be
described according to the internal energy U or rather the free energy F = U − TS as:

c =
1

n

(
∂Q

∂T

)
c =

1

n

dU

dT

c = − 1

n
T

(
d2F

dT 2

)

1.2 The Debye-Model

For the debye-model it is assumed that the internal energy U and hence the heat capacity C
of a cristall is mostly defined by the phonon oscillations and that for the energy of the phonon
oscillations the assumption of NA indepent harmonic oscillators is approximately correct, so
that the interal energy U is given by:

U =

3NA∑
i=1

h̄ωi

e
h̄ωi
kBT − 1

In cristals of macroscopic length the amount NA is so large that the discrete oscillation values
ωi lay so close to each other that the sum can be approximately described by an integral

U =

∫ ωmax

0

h̄ωi

e
h̄ωi
kBT − 1

D(ω)dω,

wherefore introducing the state density D(ω).
The state densityD(ω) specifies the amount of frequencies ω laying in an intervall [ω, ω + dω].
To determine the state density D(ω) Debye assumed that in an isotropic continuum the dispersi-
on of low frequencies is also valid for high frequencies. This in turns means that the dispersion
is given by the the linear dispersion relation ω = c · k.
Using the condition that the total number of frequencies should not exceed 3 NA in a three-
dimensional cristal the maximum frequency ωD can be obtained by the integral∫ ωD

0
D(ω)dω = 3 NA .
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The state density D(ω) is as follows

D(ω) =
9NA

ω3
D

ω2

with ωD =

√
6π2NA

V
· v3

in which v is the sonic speed. From the relation above it is clear that the state density rises
quadratically with the frequency ω.
For this reason the internal energy U is given by

U = 9NA

∫ ωD

0

h̄ω

e
h̄ω

kBT − 1

ω2

ω3
D

dω

and the specific heat capacity c is given by

c = 9NAkB

∫ ωD

0

(
h̄ω

kBT

)2 e
h̄ω

kBT(
e

h̄ω
kBT − 1

)2

ω2

ω3
D

dω .

Introducing the Debye temperature ΘD = h̄ωD
kB

and the parameter x = h̄ω
kBT

the expression
above can be written as:

c = 9NAkB

(
T

ΘD

)3 ∫ ΘD
T

0

x4ex

(ex − 1)2dx

This integral is in general only numerical solvable, but it is possible to give exact results for
some special cases:
In the case of a single atomic solid state body and high temperatures which means T � ΘD the
specific heat c is nearly constant and obeys the Dulong-Petit law:

c ≈ 3NAkB

c ≈ 25
J

mol · K

In the case of a single atomic solid state body and low temperatures which means T � ΘD the
specific heat c is

c ≈ 9NAkB
4π4

15

(
T

ΘD

)3

,

which means that the specific heat c is nearly proportional to T 3.

1.3 Phase transition

The analysed probe ,,Dysprosium” shows two critical temperatures.
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Curie Temperature

First the Curie temperature TC = 85K. Below this temperature Dysprosium is a ferromagnetic
material which means that the magnetic domains are aligned and point into the same direction.
Above the Curie temperature the material shows an antiferromagnetic behaviour. At the critical
temperature TC a phase transition takes place in the probe. It’s an first order phase transition
which means, that the derivation of the free energy F is not steady. Therfore the specific heat
capacity has a divergence at TC .

c = − 1

n
T

(
d2F

dT 2

)
(1)

Energy feed into the material doesn’t change the temperature of the material at this point.

Latent heat

Latent heat can be described as the amount of heat which can be feed into a body during a phase
transition without a change of the body temperature.
The heat energy is used during the phase transition to change the inner structure of the body.
For example, during the phase transition the magnetic properties of Dysprosium are changed
by turning the spins of the electrons so that after the transition a new spin configuration with
intrinsic higher energy exists. In the experiment we’re going to measure the latent heat.

Neel temperature

A second phase transition is located, at the Neel temperature TN = 180K. Above the Neel tem-
perature Dyspoisum a paramagnetic behavior of the probe is observed.

This phase transition is an second order transition, which means that the heat capacity is discon-
tinous at these critical temperatures. In the real experiment one can observe a heat capacity of
the form:

C =
A±

α
|t|−α + Et+B (2)

t =
T − TC
TC

(3)

The factor A± is different below and above the critical temperature.

1.4 Magnetism

In these experiment two phase transition occur in which the magnetic properties of Dysprosium
are changed.
Below the Curie-Temperature TC Dysprosium is a ferromagnetic substance. Between the Curie-
Temperature TC and Neel-Temperature TN Dysprosium has antiferromagnetic properties and
over the Neel-Temperature TN Dysprosium is a paramagnet.
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1.4.1 Ferromagnetism

Due to exchange interaction ferromagnetic materials spontaneously divide into magnetic do-
mains, the so-called Weiss domains. In a ferromagnetic material the spins in a domain are all
parallel aligned and thus have a total magnetic moment.
But the total magnetic moment of the material is null when the material is in lowest energy con-
figuration and unmagnetized because the spins of separate domains point in different directions
and so their total magnetic moment cancels out.
When the material is totally magnetized the spins of all domains point in one direction and ge-
nerate a large magnetic field with a lot of magnetostatic energy.
Even when the material is not fully magnetized the entropy of the ferromagnetic material is
small because of the high structural order.
When the temperature increases this structural order becomes less likely and so causes the ex-
tinction of the ferromagnetic behavior above a specific temperature, the Curie-Temperature TC .

1.4.2 Antiferromagnetism

In contrast to ferromagnetism the spins in the single domains are (nearly) anti-parallel aligned,
so that no total outer magnetic field can be observed. Above a specific temperature, the Neel-
Temperature TN , the thermal energy is large enough to destroy the magnetic order and the ma-
terial becomes paramagnetic.

1.4.3 Paramagnetism

Paramagnetic materials have no inner magnetic field unless an outer magnetic field exists. Under
the influence of an outer magnetic field the spins in the paramagnetic material are so aligned
that the material is magnetized and the outer magnetic field is extended by an temporary interior
magnetic field. After the removal of the outer magnetic field the material becomes unmagnetized
again.

1.4.4 Diamagnetism

Diamagnetic materials have no inner magnetic field unless an outer magnetic field exists. Under
the influence of an outer magnetic field the spins in the diamagnetic material are so aligned
that the material is magnetized and the outer magnetic field is extruded by an inverse-aligned
temporary interior magnetic field. After the removal of the outer magnetic field the material
becomes unmagnetized again.

7



P4: Specific Heat – Marco A. Harrendorf und Thomas Keck

2 Experiments

2.1 Scope of work

In this laboratory experiment the specific heat of Dysprosium at low temperatures shall be ex-
amined. The two phase transitions at the Curie-Temperature TC = 85 K as well as the Neel-
Temperatur TN = 180 K are of special interest in this connection.
After the cooling-down of the cryostat the latent heat shall be determined in the first part of the
experiment. In the next step the specific heat capacity shall be measured in the same tempera-
ture range. At last the specific heat shall be measured in the whole temperature range until the
cryostat reaches ambient temperature.

2.2 Cooling-down of the sample

In a first step the sample and sample cup have to cooled below the Curie-Temperatur TC ≈ 86K
by using liquid nitrogen. For this reason the cryostat was evacuated with a sliding vane rotory
pump so that the pressure p was below p < 1 mbar. Next a small amount of helium gas was
added so that the measured pressure was raised to p ≈ 25 mbar. According to the calibration
of the pressure sensor for nitrogen the pressure of the helium gas in the cryostat corresponds
to p ≈ 10 mbar. Due to improve the heat exchange the helium was added and the sample
cup was put on the copper plate. After that step liquid nitrogen was added and the decrease of
the temperature in the sample TS and in the sample cup TSC was monitored with a LabView-
program.
When the sample reached a temperature TS ≈ 77.5 K the sample cup was raised from the
copper plate and the helium was removed by using the sliding vane rotory pump.

2.3 Measurement of the latent heat

In this measurement the temperature of the sample TS and the sample cup TSC which was at
first TS , TSC ≈ 77.5 K was raised by using two heaters to determine the latent heat of the
first phase transition at the Curie-Temperature TC . The heat power of the sample heater was
so adjusted that the sample and sample cup nearly had the same temperature while increasing
their temperature. When the sample reached a temperature TS = 85 K the adjusting process
of the sample heater was stopped and the heating power of the sample remained constant at
PS = (6.712pm0.1) · 10−3 W . The error was estimated out of the observed fluctuations.
The temperature curves for the sample and the sample cup are shown in figure 1.
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Abbildung 1: Plot of entire mesured data - probe temperature over time
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At a sample temperature TS,1 = 87.6 K the slope of the sample curve differed from the
sample cup curve. This was a sign that the phase transition first order with the latent heat occured.
In fact we would expect a sample curve with no slope but due to the low measurement time, high
heating power and inhomogenous sample the phase transition occurs not in the full sample at
the same resulting in a small slope of the temperature curve. At a sample temperature TS,2 =
90.9K the slope of the sample curve reached the same slope as the sample cup again. The phase
transition has ended.
The temperatures TS,1 and TS,1 and were determined by fitting two straight lines to the sample
curve in an intervall 85 − 87K below and 90.5 − 91K above the phase transition. To the above
fit we applied the constraint that the gradient above and below the phase transition are equal.
The intersection points with a third fitted straight line between 87 − 90.5K determine these
temperatures as shown in figure 2.

Abbildung 2: Three straight lines fitted in the intervalls below 85 − 87K, middle 87 − 90.5K
and above 90.5− 91K.
b(t) =

(
(78.51± 0.0025) + (0.0037± 1.2 · 10−6) · t

)
K

m(t) =
(
(80.21± 0.02) + (3 · 10−36.9 · 10−6) · t

)
K

a(t) =
(
(77.75± 0.0018) + (0.0037± 1.2 · 10−6) · t

)
K

By using the heat power of the sample heater PS and the time difference between the two fits
below and above the critical temperature ∆t = 204.6± 0.8 and the sample substance amount
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n = 0.0560 mole the latent heat QL was calculated:

QL1 =
PS ·∆t
n

QL1 = (24.5± 0.4)
J

mole

The error of the latent heat was calculated out of the standard errors of the fits. This error doesn’t
include systematic errors! Later the latent heat is calculated again with an independent method,
the difference between this result and the below one, is a better estimation of the error. The curie
temperature can be estimated as the mean of the two intersection points:

TC1 = (89.3± 0.35)K

2.4 Measurement of the specific heat capacity

Before the start of this measurement the cryostat was cooled-down as written in section 2.2
again.
In this measurement the phase transition first order at Curie-Temperature TC and the phase tran-
sition second order at Neel-Temperature TN should examined by calculating the specific heat
capacity for these transitions.
The measurement was started by starting the LabView-program for the specific heat. The pro-
gram automatically adjusts the heating power of the sample cup so that the temperature of the
sample cup TSC nearly equals the temperature of the sample TS while raising the temperature
from approximately 78 Kelvin to ambient temperature.
Furthermore the program determines for every measurement step the temperature increase of
the sample ∆T and the amount of heat QS which was feed into the sample. Due to the long re-
quired measurement time the measurement was conducted overnight and the measurement data
was taken the next day.
The specific heat capacity at constant volume cV is calculated by using the heat energy feeded
in the sample QS , the substance amount of the sample n and the temperature increase ∆T :

cV =
1

n

QS
∆T

As written in the basics we measured not the specific heat capacity at constant volume but at
constant pressure however the discrepancy is negligible. The entire data is shown in figure 3.
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Abbildung 3: Plot of entire mesured data - heat capacity over probe temperature
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As suspected there are two phase transitions identifiable by the two peaks in the heat capacity
spectrum.

2.4.1 Latent heat out of the heat capacity measurement

The first one is the already observed phase transition at the curie temperature TC . The position
of the first peak can be used to estimate TC :

TC2 = (89.6± 0.2) K

The error was estimated out of the step size of the measurement, which was roughly 0.2K.
Together with our above result we can caculate the mean TC oberserved in the experiment:

TC = 89.45± 0.2K

This value doesn’t match with the value calculated by Jayasuriya TC = (91.33 ± 0.08)K. In
our result we only considered statistic errors, because the systematic errors of the thermometers,
heating unit, etc... are unkown. The deviation from the result of Jayasuriya can be explained by
these unconsidered systematic errors.

The integral under the first peak is equal to the latent heat. To calculate this integral, we fitted an
straight line under the curve an adjusted the peak by substracting this regular straight increase.

(a) With fitted straight line for regular increase (b) Corrected by the regular increase – Integral under this
curve is equal to the latent heat

Abbildung 4: Curie Peak – heat capacity over probe temperature

The integral under the corrected peak was calculated with an trapezium approximation:

QL2 = 30.94
J

mole
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There is no error available for this value. But with our above independent method for QL, we
can roughly estimate the error with the difference of the two values. While our result for QL is
the mean of the two observed values:

QL = (27.7± 6.4)
J

mole

This matchs with the value by Jayasuriya TC = (39.1 ± 1.5) J
mole in an two sigma intervall.

Jayasuriya obtained his result by 5 independent runs, so our result is not as bad as it seems to be.

2.4.2 Spin Entropy

According two the ,,Hundsche Regel” the 10 outer f-Elektrons of Dysposium first maximise
their entire spins, than maximise the orbital momentum. Altogether we obtain an angular mo-
mentum of J = 8 of an dysposrium atom. The spin entropy can be calculated according to the
,,Vorbereitungsmappe” by:

S = R · ln (2 · J + 1) = 23.54
J

moleK
with R = 8.31

J

moleK

With the latent heat QL at the curie temperature TC one can calulate the entropy increase at the
first phase transition:

SC =
QL
TC

= (0.31± 0.07)
J

moleK

Hence we can infer that the first phase transition, is a transition between two states with a small
entropy an therfore a high ordering. So the anti-ferromagnetic phase is only a little bit less
ordered than the ferromagnetic state, compared to the whole spin entropy.

2.4.3 Neel temperature

The second phase transition from the antiferromagnetic phase into the paramagnetic phase takes
place at the neel temperature TN . As already described above, one can approximate the curve of
the specific heat at the phase transition with an power law:

C =
A±

α
|t|−α + Et+B

t =
T − TN
TN

The Neel temperature TN can be obtained by the maximum of the heat capacity in the measure-
ment:

TN = (179.7± 0.2)K

The error was estimated out of the step size of the measurement, which was roughly 0.2K. The
value obtained by Jayasuriya is TN = 180.04K matchs in an two sigma intervall.
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Abbildung 5: NeelPeak with fitted power law - heat capacity over critical temperature t

Left side Right side

α = 0.117± 0.0023 α = 0.126± 0.0065

A− = 4.03± 0.08 A+ = 2.57± 0.14

The value obtained by Jayasuriya is α = 0.14± 0.04 matchs in an two sigma intervall, with the
value of α on the right side of the neel temperature. We also see that the power law describes the
curve well, because α on the left side, differs from the α on the right side by less than 8%.

2.4.4 Discussion of the specific heat curve

The entire specific heat curve is shown in figure 3. Besides the already discussed phase transiti-
ons at TC and TN we observe a linear increase in the heat capacity up to the neel temperature. At
higher temperatures T > TN one can assume a constant heat capacity, according to the dulong-
petit law. To test this assumption, we would need data beyond T > 200K. The above derived
power law c ∼ T 3 for low temperatures cannot be observed. Therfore we can infer that 77K is
not smaller than the debye temperature TD.
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[Jayasuriya] K.D. Jayasuriya, S.J. Campbell und A.M. Stewart: Magnetic transitions in dyspro-
sium: A specific-heat study, Physical Review B Volume 31 Number 9

16


	Basics
	The specific heat capacity of a solid state body
	The Debye-Model
	Phase transition
	Magnetism
	Ferromagnetism
	Antiferromagnetism
	Paramagnetism
	Diamagnetism


	Experiments
	Scope of work
	Cooling-down of the sample
	Measurement of the latent heat
	Measurement of the specific heat capacity
	Latent heat out of the heat capacity measurement
	Spin Entropy
	Neel temperature
	Discussion of the specific heat curve


	Literatur

