Teil 1 der Modulprüfung Grundlagen der Allgemeinen Chemie für Studierende der Chemie (B.Sci. und B.Edu.) im WS2016/17

Mittwoch, 07. Dezember 2016

Name:	Vornam	= = = 2	
Studienfach und Semester:	8	Matrikel-Nr.:	

Alle Rechnungen sind anzugeben – Zahlenwerte ohne Rechnung und Begründung werden <u>nicht</u> gewertet! Verwenden Sie dokumentenechtes Schreibgerät! (z.B. Kugelschreiber, kein Bleistift, kein Rotstift). Dauer eine Stunde. Sie benötigen zum Bestehen aus beiden Teilen der Prüfung (insgesamt 100 Punkte) 55 Punkte. Dieser Teil ergibt maximal 50 Punkte.

Die Klausur besteht aus sechs Fragen und 7 Seiten. Stellen Sie vor Beginn der Klausur sicher, dass Sie eine vollständige Klausur mit allen Fragen vor sich haben. Sie dürfen als Hilfsmittel einen nichtprogrammierbaren Taschenrechner verwenden.

1 2 3 4 5		5	6	Summe	Kommentar		
15P	6P	7P	7P	6P .	9P		u piĝ
						No. of the contract of the con	

1,01 H 1	ii.								nmasse in u lare Masse)	7 164		III	IV	٧	VI	VII	4,00 He 2
6,94 Li 3	9,01 Be		rac	asserstoff Jioaktiv Jalkalimetalie	ia Labera Name	Halbmeta Edelgase Nichtmet	ange. Tibelah		26,98 Al	- Elementsy	mbol	10,81 B	12,01 C 6	14,01 N 7	16,00 O 8	19,00 F 9	20,18 Ne
22,99 Na	24,31 Mg	III a	^{M∈} IV a	v V a	VI a	Alkalime VII a	talle	ord VIII a	nungszahl	Ιa	II a	26,98 Al 13	28,09 Si 14	30,97 P 15	32,06 S 16	35,45 Cl 17	39,95 Ai 18
39,10 K 19	40,08 Ca	44,96 Sc 21	47,87 Ti	50,94 V 23	52,00 Cr 24	54,94 Mn 25	55,85 Fe	58,93 Co	58,69 Ni 28	63,55 Cu 29	65,39 Zn 30	69,72 Ga	72,61 Ge	74,92 As 33	78,96 Se 34	79,90 Br 35	83,8 Ki 36
85,47 Rb	87,62 Sr 38	88,91 Y 39	91,22 Zr 40	92,91 Nb 41	95,94 Mo 42	97,91 TC 43	101.0 Ru	102,9 Rh	106,4 Pd 46	107,9 Ag	112,4 Cd 48	114,8 In 49	118,7 Sn 50	121,8 Sb 51	127,6 Te	126,9 53	131,3 Xe 54
132,9 Cs	137,3 Ba	175,0 Lu 71	178,5 Hf 72	180,9 Ta	183,8 W 74	186,2 Re 75	190,2 Os 76	192,2 	195,1 Pt	197,0 Au 79	^{200,6} Hg	204,4 TI 81	207,2 Pb 82	209,0 Bi 83	209,0 Po 84	210,0 At 85	222,0 Rn 86
223,0 Fr	226,0 Ra	262,0 Lr 103	261,1 Rf	262,1 Db	266,1 Sg 106	264,1 Bh	269,1 Hs	268,1 Mt 109	273,1 Ds	272,1 Rg							

M	21	m	0	۰
N	a		C	

Matr.Nr.:

Aufgabe 1 (15 Punkte):

- a) Was besagt das Pauli-Prinzip?
- b) Geben Sie die "Standard" Elektronenkonfiguration von Fluor im Grundzustand an.
- Geben Sie alle möglichen Quantenzahlen für die Elektronen von Fluor im Grundzustand an.
- d) Zeichnen Sie das F₂-Molekül mit Hilfe der Valenzbindungstheorie. Geben Sie dabei alle Elektronenpaare an.
- e) Erklären Sie die Bindung im F₂-Molekül mit Hilfe des entsprechenden Molekülorbital-Diagramms für F₂.

Aufgabe 2 (6 Punkte):

Das Salz NiSO $_4$ ·xH $_2$ O enthält 20,9 Gewichts-% Nickel. Wie viel Gewichtsprozent Kristallwasser liegen vor? Berechnen Sie den Molanteil x an Kristallwasser (Hinweis: x muss den Wert einer ganzen Zahl annehmen).

Aufgabe 3 (7 Punkte):

Für das Gleichgewicht:

 $H_2 + CO_2 \leftrightarrows H_2O + CO$

ist K_c = 1 bei etwa 800 °C. Berechnen Sie die Gleichgewichtskonzentrationen für CO_2 und CO, wenn zu Beginn der Reaktion 1 mol H_2 , 2 mol CO_2 und 1 mol H_2O in 1 L Reaktionsvolumen vorhanden sind.

Aufgabe 4 (7 Punkte):

100 mL konzentrierte Essigsäure (CH₃CO₂H) werden bis auf ein Endvolumen von 500 mL verdünnt. Die konzentrierte Säure ist 98%ig, ihre Dichte beträgt 1,05 kg/L. Welche Molarität hat die verdünnte Lösung?

Matr.Nr.:

Aufgabe 5 (6 Punkte):

Welche Trends und Tendenzen findet man im Periodensystem der Elemente für den Verlauf folgender Größen bei den Hauptgruppenelementen?

- a) Atomradien
- b) 1. lonisierungsenergie
- c) Elektronegativität

Aufgabe 6 (9 Punkte):

- a) Wie kann elementares Chlor im Labor dargestellt werden? Geben Sie ein Beispiel mit vollständiger Reaktionsgleichung an.
- b) Chlor wird industriell mittels Chlor-Alkali-Elektrolyse dargestellt. Welche drei großen Verfahren der Chlor-Alkali-Elektrolyse gibt es? Was ist der Ausgangsstoff für alle drei Verfahren? Geben Sie die Kathoden- und Anodenreaktion, sowie die Gesamtreaktionsgleichung der Chlor-Alkali-Elektrolyse an.