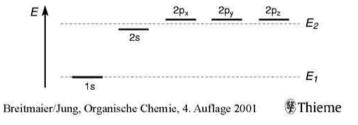


Organische Chemie I – Teil 2

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme



Wiederholung

sp³-Hybridisierung I

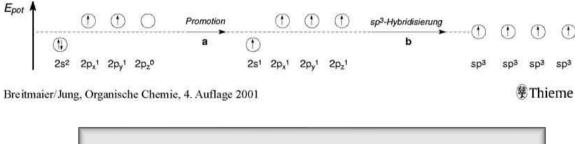
- Räumlicher Aufbau organischer Verbindungen
 - Bewirkt Eigenschaften der chemischen Verbindungen
- Orbitale:
 - Kohlenstoff: 6 e⁻
 - > Zwei in einer inneren (nicht-chemischen, inerten) Schale: (1s)² (2s)² 2p²

Wasserstoff: 1 e⁻: (1s)¹

s-Orbital p-Orbital

Wiederholung

sp³-Hybridisierung II


- Diese Elektronen werden für Bindungen gemeinsam verwendet
 - Ein Kohlenstoff und vier Wasserstoffe: acht Elektronen -> vier Bindungen
 - Naive Valenzstrichformel:

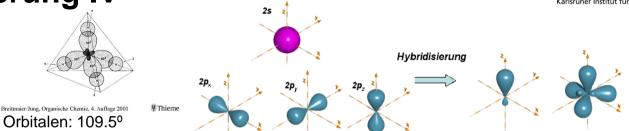
Wie aber sieht diese Verbindung räumlich aus? Quadratisch, pyramidal ...?

sp³-Hybridisierung III

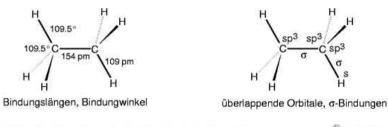
- Um eine Bindung möglich zu machen, müssen mit den Elektronen im Kohlenstoff Umorganisationen stattfinden:
 - Verteilung auf die vier leeren Atomorbitale 2s, 2p_x, 2p_y und 2p_z
 - Promotion
 - Energiegehalte s- und p-Orbitale unterschiedlich
 - Vier Orbitale werden vermischt → vier gleichwertige Orbitale
 - Hybridisierung
 - > 75% p-Charakter und 25% s-Charakter

Jedes Orbital enthält Bestandteile eines s und dreier p-Orbitale

→ sp³-Orbitale


22.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

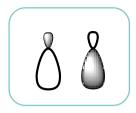
sp³-Hybridisierung IV



- sp³-Orbitale
 - Keulenförmig
 - Tetraeder

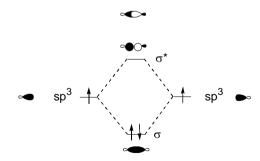
Winkel zwischen zwei Orbitalen: 109.5°

- Jedes Orbital: einfach besetzt → Bindung mit dem einfach besetzten s-Orbital des Wasserstoffes (oder dem einfach besetzten sp³-Orbital eines anderen Kohlenstoffes)
 - Einfach- bzw. σ-Bindung
- Typische Bindungslängen und Winkel:


Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

Thieme

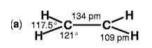
sp3 Hybridorbital

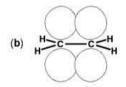

5 22.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

MO-Theorie

- Elektron mit 95%iger Wahrscheinlichkeit innerhalb der Keulenform
- Knotenebene am C → Aufenthaltswahrscheinlichkeit für das Elektron ist hier null
- Rechts und links der Knotenebene haben die Orbitallappen unterschiedliche Vorzeichen, angedeutet durch unterschiedliche Einfärbungen.
- Treten zwei Orbitale in Wechselwirkung, so ist eine Addition oder eine Subtraktion der entsprechenden Funktionen (Orbital = Funktion) möglich
 - Konstruktive Wechselwirkung: Bindung bindendes Orbital (energiearm)
 - Destruktive Wechselwirkung: Bildung einer Knotenebene antibindendes Orbital (energiereich)

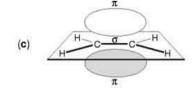
22.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS


sp²-Hybridisierung



- Hybridisierung von s-, p_x- und p_y-Orbitalen
 - > drei sp²-Orbitale
 - ▶ p₇-Orbital unverändert
 - > 67% p-Charakter und 33% s-Charakter
- sp²-Orbitale in einer Ebene p₂-Orbital senkrecht dazu
- Trigonale Bipyramide: 120°
- Können Bindungen mit Wasserstoff-Atomen, sp³- oder sp²-hybridisierten Kohlenstoff-Atomen eingehen
- π-Bindung: Überlappung zweier p-Orbitale mit je einem Elektron Doppelbindung

Freie Drehbarkeit aufgehoben



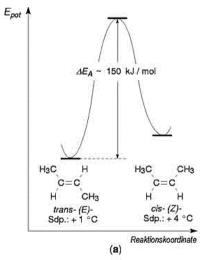
 p_x, p_y

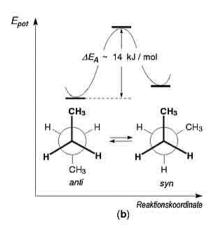
sp2-Hybridorbitale

trigonal planar

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

攀Thieme


Prof. Stefan Bräse - OCI **IOC & IBCS-FMS** 22.04.2023


Einschub

Cis-/trans-Isomerie

- Cis: Z = zusammen → höherer Siedepunkt
- Trans: E = entgegen → niedrigerer Sdp.

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

Thieme

■ Welche Orbitale sind größer: sp² oder sp³?

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

$$sp^2 < sp^3$$

Grund: sp³ mehr p-Anteil im Vergleich zu s

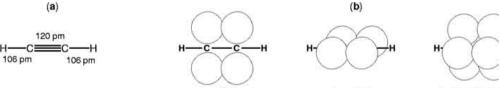
→ s-Orbitale haben kleinere Oberfläche, denn im s-Orbital ist das Elektron näher am Kern

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

■ Wann tritt eine sp²-Hybridisierung auf?

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Bindungsbildung zu 3 Bindungspartnern


Prof. Stefan Bräse – OCI IOC & IBCS-FMS

sp-Hybridisierung

- Hybridisierung von s- und p,-Orbitalen
 - > zwei sp-Orbitale
 - ▶ p_v- und p_z-Orbital unverändert
 - > 50% p-Charakter und 50% s-Charakter
- sp-Orbitale in einer Ebene: 180°
- p_v und p_z-Orbital senkrecht dazu
 - stehen senkrecht aufeinander und können mit benachbarten p-Orbitalen jeweils eine, also insgesamt zwei π-Bindungen ausbilden
 - auch die sp-Orbitale bilden eine Bindung aus, eine σ-Bindung, insgesamt ergibt sich also eine Dreifachbindung

zweite π-Bindung

erste π-Bindung

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

beide π-Bindungen

Bindungsenergien:

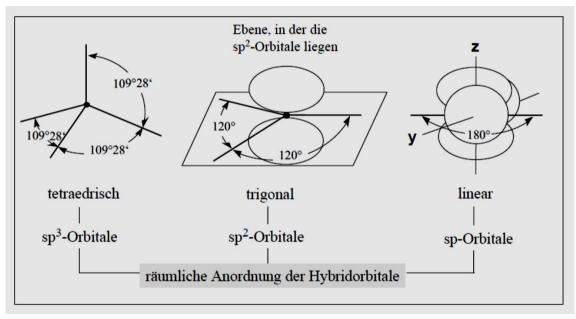
348 kJ/mol

611 kJ/mol = 348 kJ/mol (σ) + 263 kJ/mol (π)

837 kJ/mol = 348 kJ/mol (σ) + 2 · 245 kJ/mol (π)

C-C

C=C

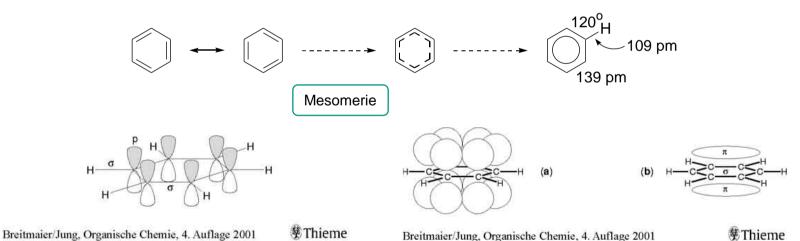

C≡C

Thieme

Prof. Stefan Bräse - OCI **IOC & IBCS-FMS**

Räumliche Anordnung der Hybridorbitale

Wollrab, 2014

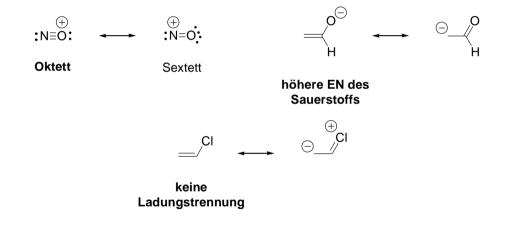

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Benzol

- 6 sp²-konfigurierte C
 - > 2 sp²-Orbitale Bindung zu benachbarten C
 - > 1 sp²-Orbital Bindung zu H
 - > planare cyclische Struktur
 - > p-Orbitale stehen senkrecht auf der Ringebene (6 e-)

15 22.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Mesomere Grenzformeln I



- Das Bindungssystem konjugierter und aromatischer π-Elektronensysteme lässt sich nicht korrekt mit Bindestrichen wiedergeben → Grenzformeln
 - > Die Summe der Grenzformeln vermittelt ein Bild der Elektronenverteilung.
- Fiktiv, d.h. die Elektronenverteilung oszilliert nicht zwischen denen der Grenzformeln, sondern ist statisch
- Mesomere Grenzformeln symbolisieren bestimmte Reaktivität
- Unterscheidung nur in der Verteilung der Bindungselektronen
- Je größer die berechnete Bindungsenergie, desto mehr an der Elektronenverteilung des Grundzustandes
- Mesomerie-Energie größer, je ähnlicher die berechnete oder geschätzte Bindungsenergie der Grenzformeln (Maximum bei energiegleichen Grenzformeln)
- Faustregel: Grenzformeln energetisch ungünstig, wenn
 - sie weniger Bindungen enthalten als andere Grenzformeln
 - Ladungstrennung (zwitterionischen Grenzformeln) neben ladungsfreien
 - Elektronensextett neben All-Oktett-Grenzformeln
- Dürfen sich nicht in der "Multiplizität", d. h. in der Zahl der ungepaarten Elektronen, unterscheiden

16 22.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Mesomere Grenzformeln II

Stoffklassen I

Stoffklasse	einfacher Vertreter	
Alkane	Propan	H ₃ C CH ₃
Alkene	Propen (Propylen)	H ₃ C CH ₂
Alkine	Propin	H₃C CH
Aromaten	Benzol	
Halogenalkane	Chlorethan (Ethylchlorid)	H₃C CI
Alkohole	Ethanol	H₃C OH
Ether	Diethylether	H₃C Ô CH₃
Acetale	Ethanaldiethylacetal	OCH ₃
Aldehyde	Ethanal (Acetaldehyd)	H ₃ C H

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Karlsruher Institut für Technologi

Stoffklassen II

Stoffklasse	einfacher Vertreter	
Imine	Ethanimin	NH H₃C H
Ketone	Propan-2-on (Aceton)	O H ₃ C CH ₃
Carbonsäuren	Ethansäure (Essigsäure)	O H ₃ C OH
(Carbonsäure)ester	Ethansäureethylester (Essigsäureethylester)	O H_3C O CH_3
(Carbonsäure)amide	Ethansäureamid (Essigsäureamid)	O H_3C NH_2
Carbonsäureanhydride	Ethansäureanhydrid (Essigsäureanhydrid)	H_3C O CH_3
Nitrile	Ethansäurenitril (Acetonitril)	H ₃ C N
Kohlensäure-Derivate	Phosgen	CI
Thiole	Ethanthiol (Thioethanol)	H₃C∕SH

Karlsruher Institut für Technolog

Stoffklassen III

Stoffklasse	einfacher Vertreter	
Thioether	Dimethylsulfid (Dimethylsulfan)	H ₃ C ^S CH ₃
Sulfoxide	Dimethylsulfoxid	O H ₃ C ^S \CH ₃
Sulfone	Dimethylsulfon	O, O H₃C ^{∕S} `CH₃
Sulfonsäuren	Toluolsulfonsäure	O, O S OH
Amine	Dimethylamin	H H ₃ C ^N CH ₃
Nitro-Verbindungen	Nitrobenzol	NO ₂
Phosphate	Triethylphosphat (Phosphorsäuretriethylester)	OEt O=R-OEt OEt
Metallorganische Verbindungen	Ethylmagnesiumbromid	H ₃ C ∕ MgBr