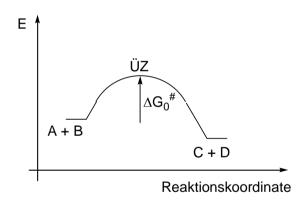


Organische Chemie I – Teil 4


Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Kinetik I

Aktivierungsenergie:

Kinetik II

Reaktionsgeschwindigkeit berechnen

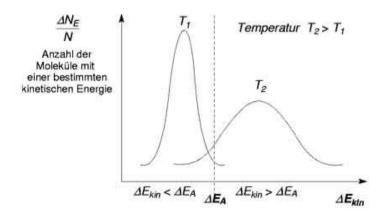
$$v = k \cdot [A] \cdot [B]$$

v: Reaktionsgeschwindigkeit

$$v = -\frac{d[A]}{dt} = -\frac{d[B]}{dt}$$

Proportionalitätsfaktor k, Geschwindigkeitskonstante

$$k = A \cdot e^{-\frac{E_A}{R \cdot T}}$$


Arrhenius-Gleichung

- A: virtuelle Geschwindigkeit, mit der die Reaktion abläuft, wenn alle Moleküle die notwendige Energie hierfür haben
- E_A ist die Aktivierungsenergie.

Kinetik III

■ Höhe des Aktivierungsbergs: Je höher, desto kleiner der Anteil der Teilchen, die diese Aktivierungsenergie aufbringen können → (zu) langsame Reaktion

Welche Möglichkeiten haben wir?

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

Thieme

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Kinetik IV

- Erhitzen
 - Temperaturerhöhung um 10 °C → Beschleunigung der Reaktion um den Faktor 2 3
- Aktivierungsenergie verringern: Katalyse
 - Der Katalysator muss unverändert aus der Reaktion hervorgehen!
 - Nur unterstöchiometrisch einzusetzen

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Kinetik V

Ein Beispiel:

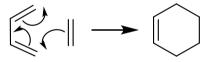
Kinetik VI

- Wie kann man eine Reaktion zum vollständigen Umsatz führen?
 - → Satz von Le Châtelier: das Prinzip vom kleinsten Zwang
 - (1) Entfernen des Wassers während der Reaktion: GG auf die rechte Seite verschoben
 - → Einsatz eines Wasserabscheiders
 - → oder wasserziehendes Mittel, z. B. H₂SO₄
 - (2) Verwendung einer der Reaktionskomponenten im Überschuss
 - → z.B. Ethanol als Lösungsmittel

Reaktionstypen I

- Homolytische Bindungsspaltung
 - Radikale, ungepaarte Elektronen, "Halbpfeile"

$$A - B \rightarrow A' + B'$$


- Heterolytische Bindungsspaltung
 - Nucleophile, Elektrophile, geladen oder ungeladen, keine ungepaarten Elektronen, "normale" Pfeile

$$A-B \longrightarrow A+B$$

Reaktionstypen II

- Pericyclische Reaktionen
 - Elektronen in einer geschlossenen, cyclischen Anordnung gleichzeitig umgeordnet

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Elementarreaktionen I

Substitution, S

Addition, A

Nucleophile Addition

$$A=B$$
 + Y-W \longrightarrow $A-B$ + W \longrightarrow $A-B$

Karlsruher Institut für Technologie

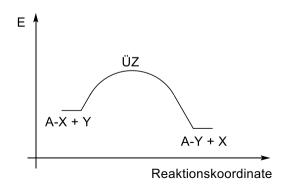
Elementarreaktionen II

Eliminierungen, E

$$A-B$$
 \rightarrow $A=B$ + Y

Umlagerungen, U

Elementarreaktionen III


Oxidation/Reduktion

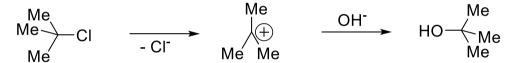
Komplexe Reaktionen

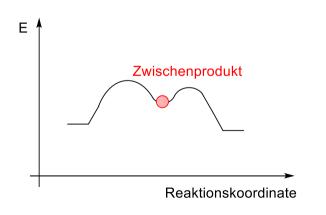
Die nucleophile Substitution I

- Methyliodid mit Natronlauge
 - → Ein Nucleophil (OH⁻) greift an einem elektrophilen Zentrum (Kohlenstoff) an
 - → Übergangszustand ÜZ

Zwei Molekülsorten haben Einfluss auf die Geschwindigkeit: Bimolekulare Reaktion → Reaktion 2. Ordnung

$$v = k[CH_3-I] \times [OH-1]$$


$$v = k[A] \cdot [B]$$



Die nucleophile Substitution II

- tert-Butylchlorid mit Natriumhydroxid
 - → Carbokation als Zwischenstufe
 - → Hohen Aktivierungsenergie

Nur eine Molekülsorte am geschwindigkeitsbestimmenden Schritt beteiligt: Monomolekulare Reaktion → Reaktion 1. Ordnung

$$v = k[(CH_3C)_3 - CI]$$

$$v = k[A]$$

14 26.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Säuren und Basen I

Arrhenius:

- Eine Säure ist eine Verbindung, die ein Proton abgeben kann.
- Eine Base ist eine Verbindung, die ein Hydroxid abgeben kann.
- Ist also NH₃ eine Base?

Brønsted:

- Eine Säure ist eine Verbindung, die ein Proton abgeben kann.
- Eine Base ist eine Verbindung, die ein Proton aufnehmen kann.
- Ist also BH₃ oder AlCl₃ eine Säure?

Lewis:

- Eine Säure ist eine Verbindung, die ein Elektronenpaar-Akzeptor ist.
- Eine Base ist eine Verbindung, die ein Elektronenpaar-Donator ist.

Karlsruher Institut für Technologie

Säuren und Basen II

- Wie stark ist eine Brønsted-Säure?
- Wie lässt sich die Säurestärke bestimmen?

$$H-A + H_2O \longrightarrow A^- + H_3O^+$$

$$K = \frac{[H_3O^+] \cdot [A^-]}{[HA] \cdot [H_2O]}$$

K: Gleichgewichtskonstante

$$K_a = \frac{[H_3O^+] \cdot [A^-]}{[HA]}$$

K_a: Säurekonstante

Säuren und Basen III

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

$$pH = pK_a$$
 wo $[A^-] = [HA]$

$$pK_a + pK_b = 14$$

Säuren und Basen IV

Welche Prinzipien gibt es, nach denen man Aciditäten abschätzen kann?

- (1) Position des Protonen-tragenden Atoms im Periodensystem
- (2) Hybridisierung des Protonen-tragenden Atoms
- (3) Resonanzstabilisierung
- (4) Induktive Effekte
- (5) Statistische Effekte
- (6) Solvatisierung

26.04.2023

Säuren und Basen V

- (1) Position des Protonen-tragenden Atoms im Periodensystem
- → Je weiter rechts und je weiter unten das Atom im PSE steht, desto acider ist die Verbindung.
- → Grund hierfür ist jeweils die Stabilität der konjugierten Base. Je stabiler die Base, desto acider die konjugierte Säure.

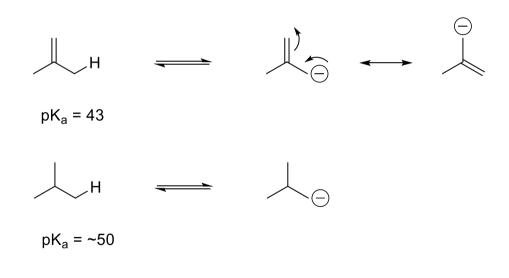
CH ₄	48	H ₃ N	38	H ₂ O	16	HF	3.2
						HCI	-7
						HBr	-9
						НІ	-10

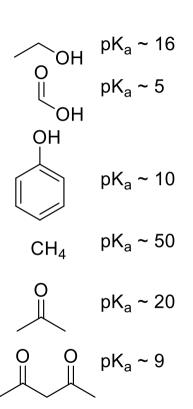
 $pK_a = 19$

 $pK_a = 4.8$

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Säuren und Basen VI


- (2) Hybridisierung des Protonen-tragenden Atoms
- → Großer s-Anteil, bessere Stabilisierung der negativen Ladung


H——H H H H H H H H H
$$\rho K_a = 25$$
 $\rho K_a = 44$ $\rho K_a = 50$

Karlsruher Institut für Technologie

Säuren und Basen VII

(3) Resonanzstabilisierung

Säuren und Basen VIII

(4) Induktive Effekte

→ Substituenten, die Elektronendichte abziehen, stabilisieren die konjugierte Base und bewirken so eine höhere Acidität

$$pK_a = 4.8$$

ΉO

$$pK_a = 2.7$$

pK_a = 1,2

26.04.2023

$$pK_a = 0.2$$

⊕ NH₄

$$pK_a = 9,2$$

$$pK_a = 10,7$$

+I-Effekt

Prof. Stefan Bräse - OCI

-I-Effekt

Säuren und Basen IX

(5) Statistische Effekte

→ Mehrprotonige Säuren sind acider als Monosäuren

$$pK_a = 4.8$$

HO
OH
 $pK_a = 4.2$
 $pK_a = 4.2$
 $pK_{a1} = 3.1; pK_{a2} = 4.8; pK_{a3} = 6.4$

Säuren und Basen X

(6) Solvatisierung

 $pK_a = 4.8$ in Flüssigphase

 $pK_a = 130$ in Gasphase

Säuren und Basen XI

Karlsruher Institut für Technologie

Mehr pKa-Werte:

- http://www.chem.wisc.edu/areas/reich/ pkatable/index.htm
- http://ccc.chem.pitt.edu/wipf/MechOMs/ evans_pKa_table.pdf

SäurepKa (ca.)SäurepKa (ca.)H-Cl-7Cyclopentadienyl-H16	_a (ca.)
H-Cl –7 Cyclopentadienyl-H 16	
$R_2C=OH^+$ ca. -7 MeOH 16	
$RC(OH)_2^+$ –6 EtOH 16	
R_2OH^+ ca. -4 CICH ₂ COMe 17	
H ₃ O ⁺ -1.74 tBuOH 19	
HNO_3 -1.4 CH_3COPh 19	
RCO_2H 4 – 5 CH_3COMe 20	
$Ar-NH_3^+$ 4.6 Ph-C=C-H ca.	21
Pyridinium 5.2 CH ₃ COOEt 25	
Ar-OH 8 – 11 CH ₃ CN 25	
MeCOCH ₂ COMe 9 HC≡C-H 25	
NCCH ₂ COOEt 9 Cyclopropenyl-H 26	
NH_4^+ 9.24 Ph_3C-H 30	
CH ₃ NO ₂ 10 MeSOCH ₃ 35	
RNH_3^+ 10 – 11 $Ph-CH_3$ 41	
MeCOCH2COOEt 11 H2C=CH-CH3 43	
$H_2N-C(Me)=NH_2^+$ 12.4 Ph-H 43	
$MeSO_2CH_2SO_2Me$ 12.5 $H_2C=CH-H$ 44	
CH ₂ (COOR) ₂ 13 Cyclopropyl-H 46	
Guanidinium 13.7 Alkyl-H 48-	-55
$HCCI_3$ ca. 15 CH_4 ca.	58
H_2O 15.74 $tBu-H$ ca.	71

25 26.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Säuren und Basen - Beispiel

OHOHONA + ONA + OHONA
$$pK_a = 4.8$$
 $pK_a = 16$

Prof. Stefan Bräse – OCI IOC & IBCS-FMS