

Organische Chemie I – Teil 5

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Vorkommen und Darstellung I

- Wichtigste Rohstoffe: Erdgas, Erdöl und Kohle
- Erdgas: gasförmige Alkane C1 bis C4
- Rohöl: sehr vielen Komponenten (u.a. auch Alkane), die durch Destillation getrennt werden können.
- Verwendung als:
 - 25% Vergaserkraftstoff (Benzin)
 - 19% Dieselkraftstoff
 - 37% Heizöl
 - 9% Asphalt, Bitumen
 - 10% Industrielle Organische Synthese

Fraktion	Siedebereich °C	Kohlenwasserstoffe C _n	Verwendung
Gasfraktion	< 40	C ₁ - C ₆	Treibstoff, Heizgas
Petrolether	30 - 60	C ₅ - C ₆	Lösemittel, Benzin
Ligroin	60 - 100	C ₆ - C ₇	Kfz-Benzin
Gasolin	40 - 200	C ₅ - C ₁₀	Kfz-Benzin
Kerosin	180 - 230	C ₁₁ - C ₁₂	Düsentreibstoff
Gasöl (Heizöl)	230 - 300	C ₁₃ - C ₁₇	Dieselmotoren, Ölbrenne
Schmieröle	300 - 400	C ₂₀ - C ₃₀	Schmierstoffe
Paraffinwachs	400 - 500	C ₂₀ - C ₃₀	Vaseline
Asphalt	Destillations-	Polycyclen	Teer zum Straßenbau
Petrolkoks	rückstände	Kohlenstoff	Brennstoff, Elektroden

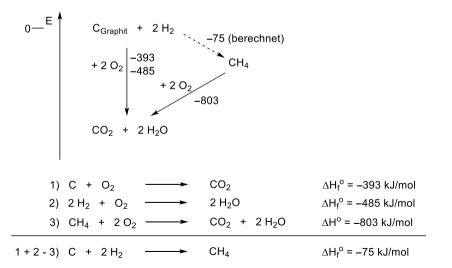
Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

Thieme

26.04.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Vorkommen und Darstellung II

- Energie zur Alkansynthese: Bildungsenergie oder heat of formation
 - Bezogen auf die Energie der zu Grunde liegenden Elemente
 - Bsp. Methan:
 - Kohlenstoff: in seiner stabilsten Modifikation, Graphit
 - Wasserstoff
 - Bezogen auf den stabilsten Aggregatzustand bei 25 °C und 1013 mbar


Wärmetönung dieser Reaktion nicht messbar, da für eine Messung zu langsam

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Vorkommen und Darstellung III

- Satz von Heß:
 - Die Reaktionsenthalpie hängt nicht vom durchlaufenen Reaktionsweg ab
 - Satz der konstanten Wärmesummen

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Nomenklatur I

- Summenformel C_nH_{2n+2}
 - Wortstamm: gibt die Kohlenstoffanzahl an
 - Suffix "-an"

Methan	CH
IVICLIALI	CI

Ethan H₃C-CH₃

Propan H₃C-CH₂-CH₃

■ Butan H₃C-CH₂-CH₂-CH₃

Pentan H₃C-CH₂-CH₂-CH₂-CH₃

- Ab dem Pentan entspricht der Stamm der zugehörigen griechischen Zahl
 - Hexan, Heptan, Octan, Nonan, Decan, Undecan...

Nomenklatur II

- Ab dem Butan: Isomere
 - → Gerüst- oder Konstitutions-Isomere
- Kennzeichnung unverzweigter Substrate: Präfix "n-"
- Methylverzweigung am Kettenende: Vorsilbe "iso-"
- Doppelte Methylverzweigung am Kettenende: Vorsilbe "neo-"
- Isomere: gleiche Summenformel, aber unterschiedlicher räumlicher Aufbau
- Konstitutions-Isomer: Isomere mit unterschiedlicher Aufeinanderfolge und Art der Atomverknüpfung ohne Berücksichtigung der räumlichen Anordnung der Atome

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Nomenklatur III

n-Pentan

n-Butan

entan *n*-Hexan

iso-Butan iso-Pentan

neo-Pentan

iso-Hexan

neo-Hexan

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Nomenklatur IV

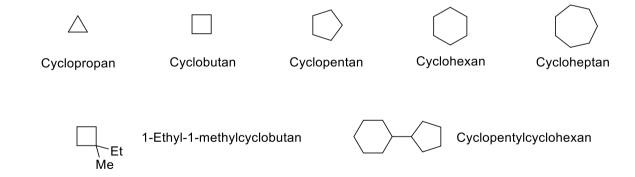
■ Je größer die Kohlenstoff-Anzahl, desto mehr Isomere möglich:

C-Atome	Isomere der Summenformel C _n H _{2n+2}
3	1
4	2
5	3
6	5
7	9
8	18
9	35
10	75
15	4 347
20	336 319
30	> 4 000 000
40	62 481 801 147 341

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Nomenklatur V

- Komplexe Verzweigungen:
 - Längste Kette ermitteln
 - Abgehenden Substituenten festlegen
 - Nummerierung: Substituenten möglichst kleine Nummern
 - Substituenten alphabetisch sortiert und mit der Nummer vorangestellt
 - Sofern der Substituent eine Kohlenstoffkette ist, so wird die Radikalbezeichnung Suffix -yl gewählt


3-Brom-4-ethyl-3-methyloctan

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Nomenklatur VI

- Cycloalkane:
 - Summenformel C_nH_{2n}
 - Vorsilbe "Cyclo-"

Prof. Stefan Bräse – OCI IOC & IBCS-FMS