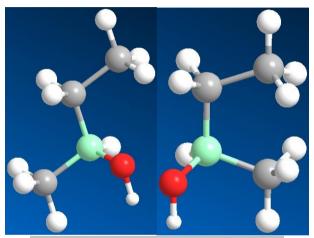
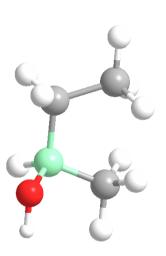

Organische Chemie I – Teil 7


Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme


Stereogenes Zentrum

C₂H₅: ragt nach oben

CH₃: jeweils nach links oder rechts

H: zeigt nach hinten

2 03.05.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Oxidation

- Alkane auch Paraffine → para affinis: hier reaktionsträge
 - Inerte Verbindungen
 - Reaktionen mit
 - Sauerstoff (Verbrennung)
 - Kationen
 - Radikalen
- Vollständige Oxidation (Verbrennung):

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

 $\Delta G^0 = -777 \text{ kJ/mol}$

Reaktionen – Radikalische Halogenierung I

- Radikalische Halogenierung:
 - Geeignete Bedingungen zur Radikalbildung
 - a) Bestrahlung mit Licht
 - b) Erhitzen auf über 300 °C
 - c) Zugabe von Radikalstartern bei 60 100 °C
 - d) oder alles zusammen.

03.05.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Radikalische Halogenierung II

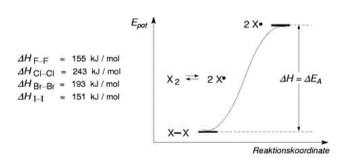
- Radikalische Halogenierung Radikalkettenmechanismus:
 - Startreaktion:

CI-CI
$$\xrightarrow{hv}$$
 2 CI

Radikalkette:

Kettenabbruch:

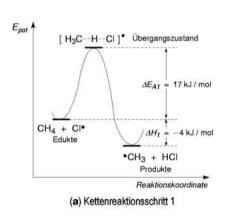
Prof. Stefan Bräse – OCI IOC & IBCS-FMS


Reaktionen – Radikalische Halogenierung III

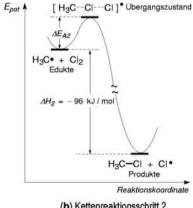
Energie, um Halogene in Radikale zu spalten:

$$E = h \cdot v$$

→ photochemische Initiierung



Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

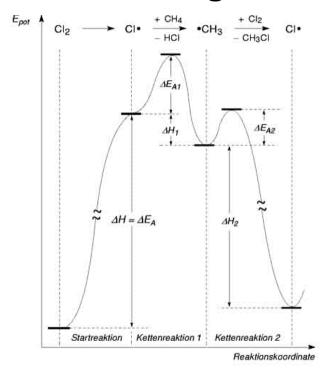


攀Thieme

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

(b) Kettenreaktionsschritt 2

Thieme


Kettenreaktion

Prof. Stefan Bräse - OCI **IOC & IBCS-FMS**

Karlsruher Institut für Technologi

Reaktionen – Radikalische Halogenierung IV

Gesamtreaktion:

Breitmaier/Jung, Organische Chemie, 4. Auflage 2001

Thieme

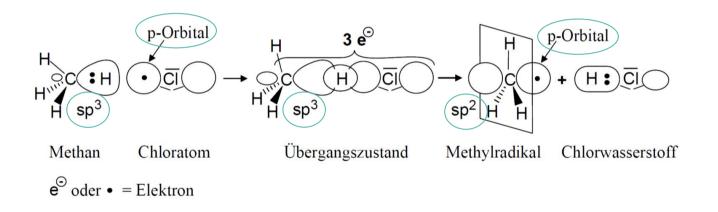
Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Radikalische Halogenierung V

Halogenierungen im Überblick:

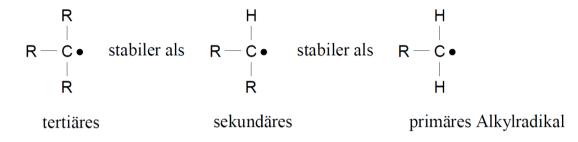
	Startreaktion	Kettenreaktionsschritt 1				Kettenreaktionsschritt 2				Reaktions- wärme von	Reaktions- verlauf
	$X_2 \longrightarrow 2X$ $\Delta E_A = \Delta H$	X• +	CH ₄ -	► •CH ₃	+ HX	•CH ₃ ⊿H _{X-X}	+ X ₂ − ΔH _{CH3-X}	→ CH ₃ _X ΔE _{A2}	X + X• ΔH ₂	1 + 2 ΔH _{1,2}	
		∆H _{CH3-H}	∆H _{H-X} ∠	ΔE_{A1}	ΔH_1						
Fluorierung	+ 155	+ 427	- 566	+ 4.2	- 138.3	+ 155	- 453	+ 4.2	- 297	- 436	heftig
Chlorierung	+ 243	+ 427	- 432	+ 16.8	- 4.2	+ 243	- 339	+ 4.2	- 96	- 101	stark
Bromierung	+ 193	+ 427	- 365	+ 75.4	+ 62.9	+ 193	- 281	+ 4.2	- 88	- 25	mäßig
lodierung	+ 151	+ 427	- 297	+ 129.9	+ 129.9	+ 151	- 222	+ 4.2	- 71	+ 59	keine R.

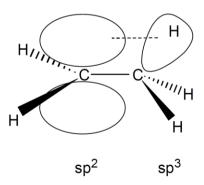
Breitmaier/Jung, Organische Chemie, 4. Auflage 2001


Thieme

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Radikalische Halogenierung VI


Halogenierungen – Orbitalinteraktionen:


Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Radikalische Halogenierung VII

Radikalstabilitäten:

Stabilisierung des Radikals durch Hyperkonjugation:

IOC & IBCS-FMS 03.05.2023 Prof. Stefan Bräse - OCI

Karlsruher Institut für Technologi

Reaktionen – Pyrolyse

- Cracken:
 - C–C- und C–H-Bindungen gebrochen und umgeordnet
 - Katalysatoren

$$C_{12}H_{26} \xrightarrow{482 \text{ }^{\circ}\text{C}} C_{3}H_{8} + C_{4}H_{10} + C_{5}H_{12} + C_{6}H_{14}$$
 $17\% 31\% 23\% 18\%$

Prof. Stefan Bräse – OCI IOC & IBCS-FMS