

Organische Chemie I – Teil 8

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Reaktionen – Nucleophile Substitution I

- Begriffe:
 - Nucleophil: Elektronenpaar-Donor
 - Elektrophil: Elektronenpaar-Akzeptor

 - Intermolekulare Reaktion beider dieser Molekülsorten
- Beispiel: Angriff von OH- an einem Alkylhalogenid

- → der Alkyl-Rest wird vom Elektrophil auf ein Nucleophil übertragen
- → das Elektrophil dient daher als Alkylierungsmittel

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Nucleophile Substitution II

- Parameter, die die Reaktion beeinflussen:
 - (1) Sterische Faktoren
 - (2) Nucleophil
 - (3) Nucleofug, die Abgangsgruppe
 - (4) Solvens > sehr komplexe und tiefgreifende Thematik und wird daher hier nicht im Detail angesprochen

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Reaktionen – Nucleophile Substitution III

unbesetztes

- Parameter, die die Reaktion beeinflussen:
 - (1) Sterische Faktoren

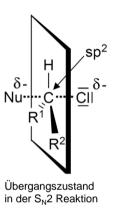
S_N1: Zunehmende Stabilität des Carbenium-Ions und damit zunehmende Reaktivität

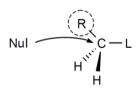
p-Orbital sp²-hybridisiert sp³ hybridisiert Carbenium-Ion R R^2 R^3

© Wollrab, 2014

Vinyl, Aryl << Methyl << primär < sekundär <<Benzyl, Allyl < tertiär

Reaktionen – Nucleophile Substitution III




- Parameter, die die Reaktion beeinflussen:
 - (1) Sterische Faktoren

S_N2: Abnehmende sterische Behinderung und damit zunehmende Reaktivität

Vinyl, Aryl << tertär < sekundär < primär < Methyl

→ Grund: Je größer und zahlreicher die Substituenten am Inversionszentrum, desto erschwerter ist der Angriff.

Nucleophiler Angriff bei einem Rest \neq H \rightarrow kleiner räumlicher Anspruch

Erschwerter nucleophiler Angriff bei drei Resten \neq H \rightarrow großer räumlicher Anspruch

→ tert-Butyl- oder neo-Pentyl-Gruppe: keine S_N2-Reaktion

$$H_3C$$
 X
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

Reaktionen – Nucleophile Substitution IV

- Parameter, die die Reaktion beeinflussen:
 - (2) Nucleophil
 - > Nucleophilie nimmt mit steigender Basizität zu:

$$CH_{3}CH_{2}-\overline{\underline{0}}I^{\bigcirc} > H-\overline{\underline{0}}I^{\bigcirc} > \left(\begin{array}{c} \\ \\ \\ \end{array}\right) -\overline{\underline{0}}I^{\bigcirc} > H_{3}C-C \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = H_{2}C$$

> Nucleophilie sinkt mit zunehmender Elektronegativität des angreifenden Atoms

$$R_2N^+ >> RO^- >> F^-$$

 $RS^- > RO^-$

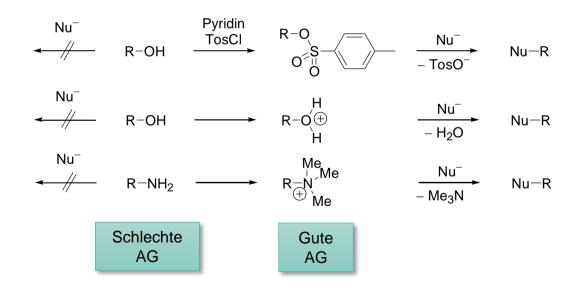
Nucleophilie steigt mit gebundenem Heteroatom mit freiem Elektronenpaar (α-Effekt)

$$HO-O^- > HO^-$$

 $H_2N-NH_2 > H_3N$

Reaktionen – Nucleophile Substitution V

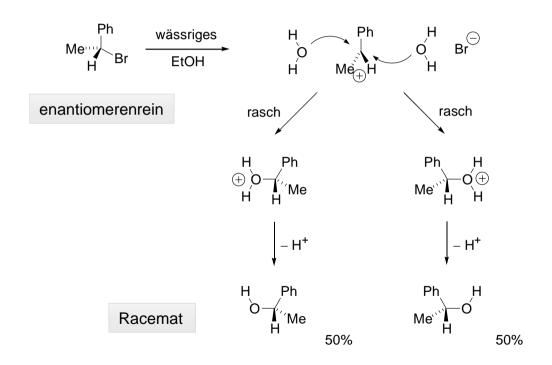
- Parameter, die die Reaktion beeinflussen:
 - (3) Nucleofug, die Abgangsgruppe


Ein Teilchen ist ein umso besseres Nucleofug, je stabiler das entstehende Teilchen ist (d.h. konjugierten Basen starker Säuren).

$$-\overline{\underline{O}} - \overline{\underline{S}} | \overline{\underline{O}} | \overline{\underline$$

Karlsruher Institut für Technologie

Reaktionen – Nucleophile Substitution VI


- Parameter, die die Reaktion beeinflussen:
 - (3) Nucleofug, die Abgangsgruppe Beispiele:

Reaktionen – Nucleophile Substitution VII

Beispiel:

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

S_N1 und S_N2 im Vergleich

- S_N1-Reaktionen bei
 - Substitutionen an R_{terf}—X, Ar₂C—X und Ar₃C—X
 - Substitutionen an substituierten und unsubstituierten Benzyl- und Allyltriflaten
 - Substitutionen an R_{sek}-X, wenn schlechte Nucleophile eingesetzt werden wie z.B. bei Solvolyse
 - Substitutionen an R_{prim} -X fast nie (Ausnahme X = N_2 +)
- S_N2-Reaktionen finden statt
 - Substitutionen in sterisch ungehinderten Benzyl- und Allylpositionen (Ausnahme X = Triflat o. ä.)
 - Substitutionen in MeX und R_{prim}-X
 - Substitutionen in R_{sek}-X, sofern auch nur ein leidlich gutes Nucleophil verwendet wird
 - Substitutionen in Substraten vom Typ R_{terf}-X oder R_{terf}-C-X nie

Nomenklatur I

- Olefine
- Endung "-en"
- Positionsbezifferung: Atom das der Doppelbindung n\u00e4her liegt Atom
 - → Kleinere der beiden möglichen Zahlen bezeichnet die Position der Doppelbindung.
- Trivialnamen:
 - Ethen oder Ethylen
 - Propen oder Propylen
 - Methylpropen oder Isobuten
 - 1,2-Diphenylethen oder Stilben
 - Reste:
 - Ethenyl-Substituenten = Vinyl
 - 2-Propenylrest = Allyl

Nomenklatur II

Beispiel:

1-Chlor-4-ethyl-6-methylhept-2-en oder 1-Chlor-4-ethyl-6-methyl-2-hepten

1-011101-4-64131-0-HIGHIST-Z-Heptell

(Z)-1-Chlor-4-ethyl-6-methylhept-2-en oder (Z)-1-Chlor-4-ethyl-6-methyl-2-hepten

(Z)-1-Cnior-4-ethyl-b-methyl-Z-hepter

- Konfigurations-Isomere/ E,Z-Isomere:
 - Gleiche Konstitution, andere Anordnung der Substituenten an einer Doppelbindung
 - E = entgegen
 - Z = zusammen
 - Relative Lage der höchst-rängigen Substituenten (CIP) zueinander bestimmen

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Vorkommen und Synthese I

- Steamcracken
 - Rohöl
 - Gewinnung von Ethylen und Propylen
 - Ca.10-20 Mio To/a

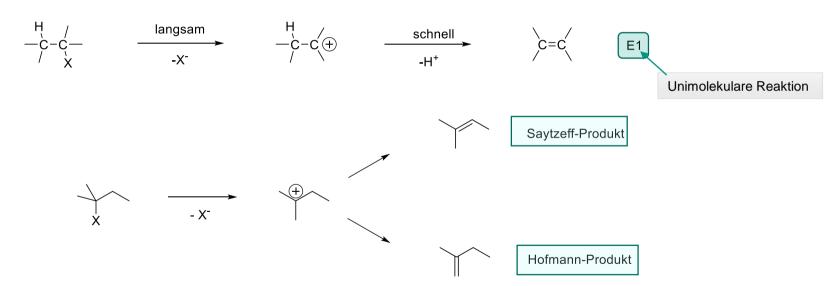
Vorkommen und Synthese II

Eliminierungen

OH
$$A = +92 \text{ kJ/mol}$$
 $\Delta G = \Delta H - T \cdot \Delta S$

Mechanismus:

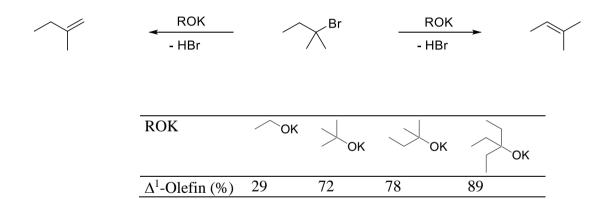
Vorkommen und Synthese III



Eliminierungen

Vorkommen und Synthese IV

Eliminierungen


...in Konkurrenz zur S_N1-Reaktion

16 03.05.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Vorkommen und Synthese V

■ Eliminierungen: Je sterisch anspruchsvoller die Base, desto mehr Hofmann-Produkt.

