

Organische Chemie I – Teil 9

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Karlsruhar Institut

Vorkommen und Synthese VI

- Konkurrenz Substitution/Eliminierung
 - Eliminierungen statt Substitutionen: wenn das Substrat sterisch anspruchsvoll ist

Substrat	$k_{\rm S_N}$ [10 ⁻⁵ l mol ⁻¹ s ⁻¹]	$k_{\rm E}$ [10 ⁻⁵ l mol ⁻¹ s ⁻¹]	$k_{\rm E}$ (pro β -H) [10 ⁻⁵ l mol ⁻¹ s ⁻¹]	Olefin	Olefinanteil
Br	118	1.2	0.4	//	1%
>—Br	2.1	7.6	1.3	>	79%
	<<2.1	79	8.8		100%

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Karlsruher Institut für Technologie

Vorkommen und Synthese VII

Konkurrenz Substitution/Eliminierung

Substrat	$k_{\rm S_N}$ [10 ⁻⁵ 1 mol ⁻¹ s ⁻¹]	$k_{\rm E}$ [10 ⁻⁵ l mol ⁻¹ s ⁻¹]	$k_{\rm E}$ (pro β -H) [10 ⁻⁵ l mol ⁻¹ s ⁻¹]	Olefin	Olefinanteil
——Br	172	1.6	0.53	//	1%
—\Br	54.7	5.3	2.7	>	9%
— Br	5.8	8.5	8.5	<u> </u>	60%

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Vorkommen und Synthese VIII

- Konkurrenz Substitution/Eliminierung
 - Nucleophile sind immer auch zu einem gewissen Maße basisch und Basen immer auch nucleophil

DBU
1,8-Diaza[5.4.0]bicycloundec-7-en

KO*t*Bu Kalium-*tert*-butanolat

> Synthese konjugiertes Dien versus 1-Bromcyclohexen:

Reaktionen I

- Reaktive Komponente: Doppelbindung
 - Orbital mit zwei Elektronen, d.h. nucleophiler Charakter
 - trans-substituierte Alkene stabiler als cis-substituierte
 - Grund: sterische Hinderung und das Dipolmoment sind niedriger
 → hohes Dipolmoment ≅ Ladungstrennung, die stets mit einem Energieaufwand verbunden ist
 - alkylsubstituierte Doppelbindungen günstiger, da Hyperkonjugation
 - D.h. C–H oder C–C-Bindung in Nachbarschaft zur Doppelbindung kann in Resonanz treten mit den p-Orbitalen

Alken	ΔG^{o} (kJ/mol)
	79.1
	71.8
	70.0
	65.6
	59.7
V	

08.05.2023 Prof. Stefan Bräse – OCI IOC & IBCS-FMS

Karlsruher Institut für Technolog

Reaktionen II

- Elektrophile Addition
 - Mehrstufig
- Α
- Säure-katalysierte Addition von Wasser:
 - (1) Angriff des Protons (Angriff eines Elektrophils):

$$H^{+}$$
 $H_{2}C=CH_{2}$
 $H_{2}C-CH_{2}$

- (2) Carbokation oder Carbeniumion reagiert mit einem Nukleophil (H₂O)
- (3) Oxonium-Spezies verliert ein Proton

6 08.05.2023 Prof. Stefan Bräse – OCI

Reaktionen III

- Elektrophile Addition
 - Addition von Halogenen:
- B.1
- (1) Br₂ kann polarisieren und eine positive Partialladung aufweisen
- (2) positiv polarisierte Brom kann als Elektrophil am Alken angreifen
- (3) Freigesetztes Bromid kann am Carbokation bzw an der Bromonium-Spezies angreifen

$$= \frac{\operatorname{Br}_{2}}{\operatorname{-Br}^{-}} \left(\begin{array}{c} \vdots \\ \oplus \end{array} \right) \begin{array}{c} \vdots \\ \operatorname{Br} \end{array} \right) \xrightarrow{\operatorname{Br}} \begin{array}{c} \operatorname{Br} \\ \operatorname{Br} \end{array}$$

Prof. Stefan Bräse – OCI IOC & IBCS-FMS

B.2

Maleinsäurediethylester

Fumarsäurediethylester

Reaktionen IV

- Elektrophile Addition
 - Addition von Halogenen: Bromierung von Butendisäurediestern

EtO₂C CO₂Et Br_2 EtO₂C CO₂Et Br _ Br⁻ EtO₂C Br Br. CO₂Et **₹**√H. Н,, Br'Br CO₂Et EtO₂C (S,S) (R,R)Enantiomere

CO₂Et EtO₂C Br_2 ,,,CO₂Et EtO₂C Br 🥒 Br⁻ EtO₂C H **,∕**∵CO₂Et Br '''CO₂Et Br'Br EtO₂C (S,R) (R,S) identisch, meso

Bildung von 2 stereogenen Zentren, aber *nicht chiral*

Prof. Stefan Bräse - OCI

8

Reaktionen V

- Elektrophile Addition
 - Addition von Halogenen: Addition von Unterchloriger Säure oder Brom in H₂O

B.3/4

Prof. Stefan Bräse – OCI IOC & IBCS-FMS