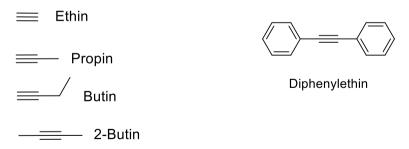


Organische Chemie I – Teil 11


Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

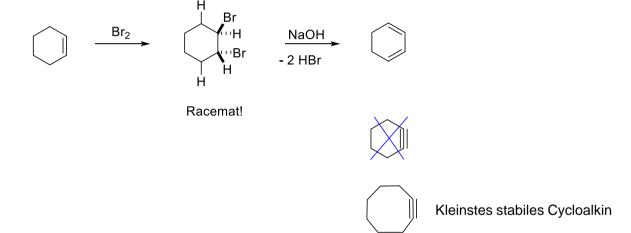
Karlsruher Institut für Technolog

Nomenklatur

- Wortstamm des Alkans
- Endsilbe "-in"
- Auch Acetylene
- Lage der Dreifachbindung wird mit einer vorgestellten Zahl beschrieben
- $\mathbf{C}_n \mathbf{H}_n$

Synthese I

- Großtechnisch
 - z.B. Ethin mittels Hochtemperaturpyrolyse von Erdölfraktionen oder Erdgas
 - Oder Ethinsynthese aus Calciumcarbid


$$CaC_2 + 2 H_2O \longrightarrow C_2H_2 + Ca(OH)_2$$

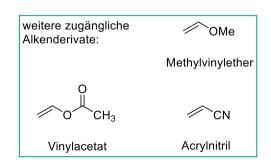
- z.B. Synthese Diphenylethin Eliminierung
 - Bromierung von Stilben (Diphenylethen) und anschließende Dehydrohalogenierung

Karlsruher Institut für Technologi

Synthese II

Im Vergleich

Reaktionen I



Additionen

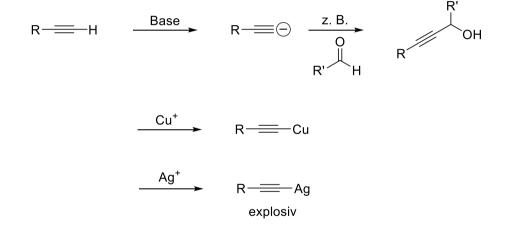
$$R = R \qquad \begin{array}{c} H_2 \\ \hline Pd]_{vergiftet} \end{array} \qquad \begin{array}{c} H \\ R \end{array} \qquad \begin{array}{c} H_2 \\ \hline Pd]_{aktiv} \end{array} \qquad \begin{array}{c} H \\ R \end{array}$$

* d.h. z. B. durch Zusatz von Schwefel oder Stickstoff-Heterocyclen (Chinolin)

- → Setzt man lediglich vergiftete Katalysatoren ein, so bleibt die Reaktion auf Stufe der Alkene stehen.
- Elektrophile Addition

Reaktionen III

Addition von Wasser


$$H \longrightarrow H + H_2O$$
 IRC I

Tautomerie

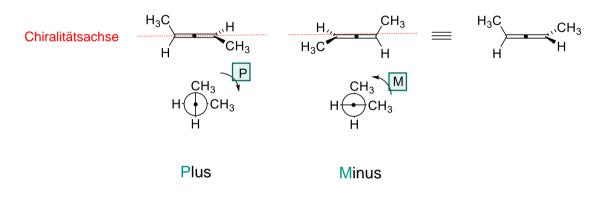
Reaktionen IV

Reaktion mit Kupfer oder Silbersalzen

Klassifizierung I

Isolierte Doppelbindungen

Konjugierte Doppelbindungen


Kumulierte Doppelbindungen (Allene)

$$H_2C=C=CH_2$$

Klassifizierung II

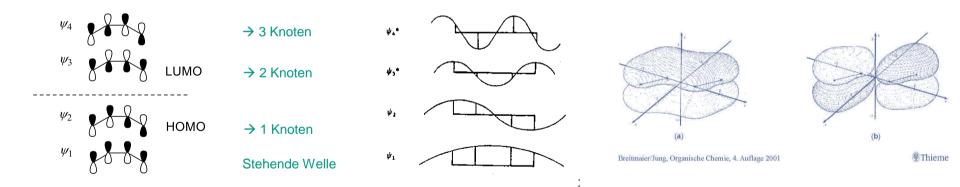
Bsp. Allene:

1,3-Dimethylallen

chiral

Chiralitätsachse

- Bestimmung der Helicalität:
 - Entlang der Chiralitätsachse schauen
 - Vom vorderen Prioritäts-Substituenten zum hinteren gehen
 - Drehung im Uhrzeigersinn bedeutet (P), eine entgegen bedeutet (M)

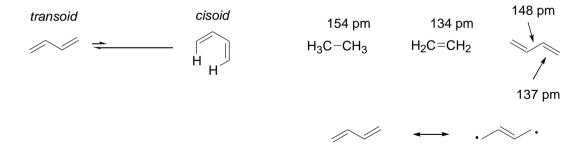

Polyene I

10

15.05.2023

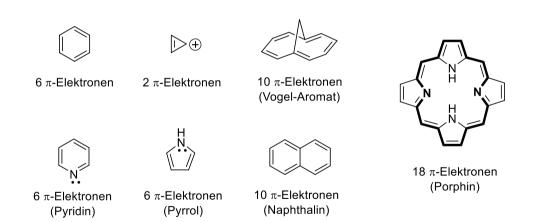
Bsp.: 1,3-Butadien – die MO der beiden Doppelbindungen treten in WW

■ Elektronen in einem Polyen: Teilchen im Kasten – Levels zunehmender Energie als Schwingungen

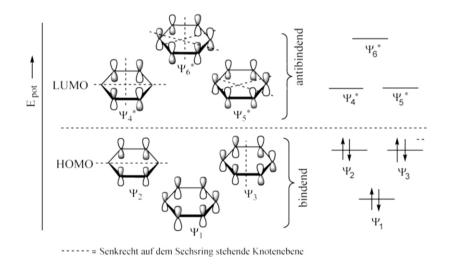

Prof. Stefan Bräse – OCI SS 2023

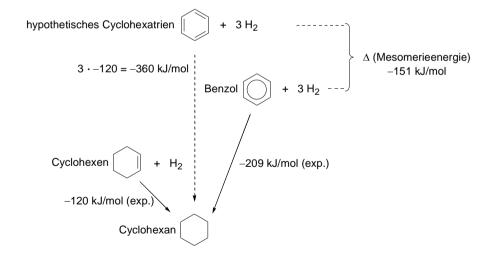
Polyene II

IOC & IBCS-FMS


- → Geometrische Konsequenzen:
 - die äußeren Bindungen werden kürzer
 - die innere Bindung wird länger
 - Drehung um die innere "σ-Bindung" ist erschwert → nur noch zwei stabile Konformationen: cisoid & transoid

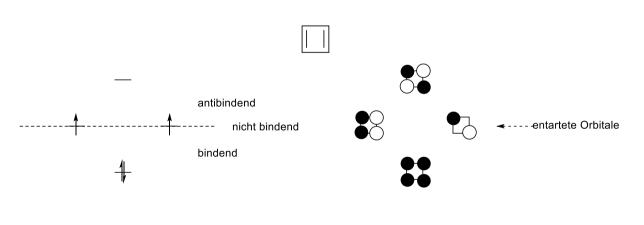
Aromatizität I


- Hückel: cyclisch konjugierten Systeme, in denen (4n + 2) Elektronen (mit $n \in N_o$)
- Besonders stabilisiert



Aromatizität II

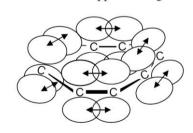
- Hückel: cyclisch konjugierten Systeme, in denen (4n + 2) Elektronen (mit $n \in N_o$)
- Besonders stabilisiert



Prof. Stefan Bräse – OCI SS 2023

Aromatizität III

- Antiaromatische Systeme:
 - cyclisch konjugierte Systeme
 - 4n Elektronen (mit $n \in N_o$)
 - besonders destabilisiert



134 pm

lokalisierte Doppelbindungen

zueinander nicht parallele p-Orbitale überlappen nicht

Prof. Stefan Bräse – OCI SS 2023

Fragen?

Prof. Stefan Bräse – OCI SS 2023 IOC & IBCS-FMS