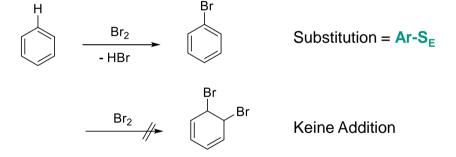


Organische Chemie I – Teil 12

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

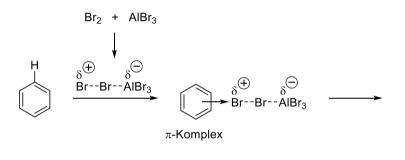
Reaktionen I


23.05.2023

2

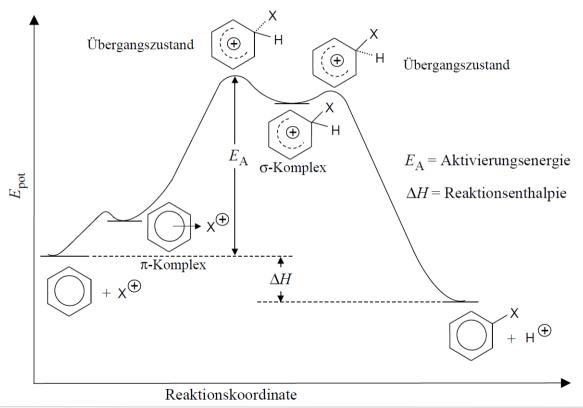
IOC & IBCS-FMS

- Reaktionsträger als Olefine
- \blacksquare π -Wolke der Aromaten hat nucleophilen Charakter \rightarrow von Elektrophilen angegriffen
 - → elektrophile aromatische Substitution (Ar-S_F)

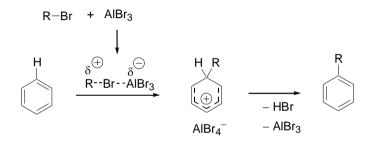


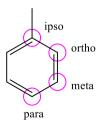
Prof. Stefan Bräse – OCI SS 2023

Reaktionen II


Mechanismus:

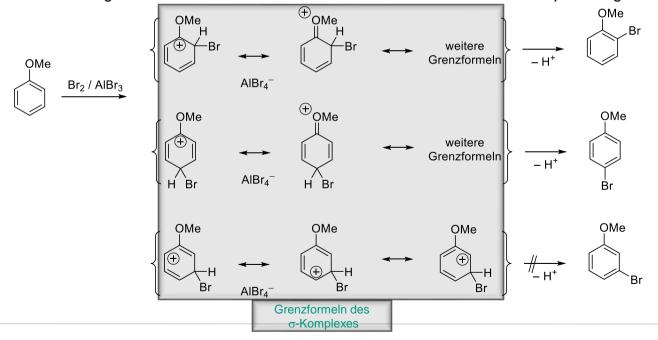
Reaktionen III


Energiediagramm:

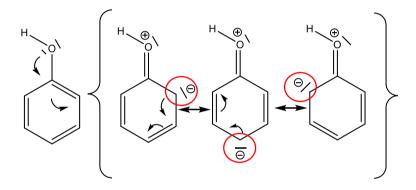


Reaktionen IV

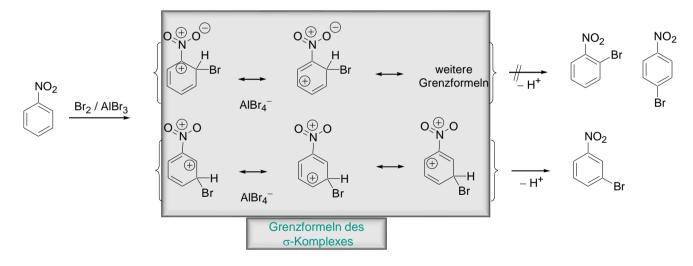
Bsp.: Friedel-Crafts-Alkylierung



Reaktionen V



- Zweitsubstitution Erstsubstituent hat dirigierende Wirkung: +*I- und* +*M-Effekt*
 - → Positive Ladungen am Substituenten können stabilisiert werden → ortho- oder para-dirigierend

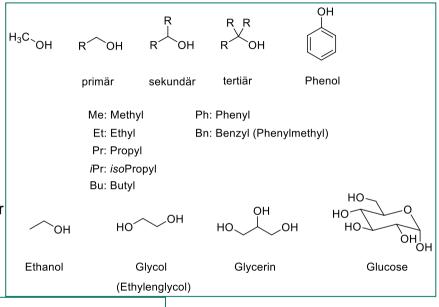


Reaktionen VI

- Zweitsubstitution Erstsubstituent hat dirigierende Wirkung: -I- und -M-Effekt
 - → Positive Ladungen am Substituenten müssen vermieden werden → meta-dirigierend

Prof. Stefan Bräse – OCI SS 2023

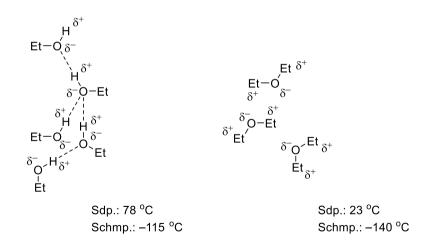
8



-M (-) Effekt

Allgemeines

- Alkohole:
 - Funktionelle Gruppe: Hydroxy-Gruppe
 - Suffix: -ol
 - Spezialfall: aromatische Alkohole
 - Mono-, Di-, Tri-, oder Polyalkohole
- Ether
 - Alkylierte Alkohole oder zweifach alkyliertes Wasser
 - Benennung:
 - Alkyl₁-alkyl₂-ether oder Alkoxy-Verbindung



Karlsruher Institut für Technologi

Phys. Eigenschaften I

- Alkohole: Wasserstoff-Brückenbindungen
 - als Donoren und/oder Akzeptoren
- Ether: Wasserstoff-Brücken-Akzeptoren

23.05.2023

Karlsruher Institut für Technologi

Phys. Eigenschaften II

- Alkohole:
 - Mäßig sauer
 - pK_a -Wert ≈ 16

■
$$H_3CCH_2OH$$
 $pK_a = 15.9$

•
$$(H_3C)_3COH$$
 $pK_a = 18$ induktiver Effekt (+I)

■
$$C_6H_5OH$$
 pK_a = 9.9 Resonanzstabilisierung der Base

Fragen?

Prof. Stefan Bräse – OCI SS 2023 IOC & IBCS-FMS