

Organische Chemie I – Teil 14

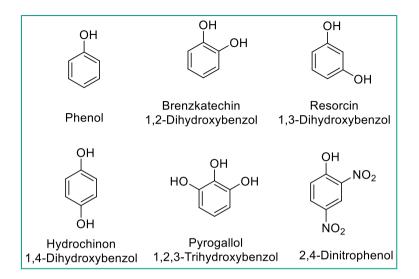
Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Epoxide

- Cyclische Ether
- Leicht zugänglich
 - Intramolekulare S_N2-Reaktion

aus Alkenen mit Persäuren

$$H_3C$$
 CH_3
 R
 O
 OH
 H_3C
 H_3C
 H
 O
 CH_3
 H
 O
 H

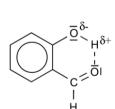

 $R \xrightarrow{O} CH_3$

- Nucleophile Öffnung mittels schwacher Lewissäuren
 - Grund: Ringspannung

Glycol

Phenole I

- Aromatische Alkohole
 - Grundkörper: Phenol



 Synthese über Chlorbenzol mit NaOH bei hohem Druck und hoher Temperatur (nucleophile Aromatensubstitution)

Phenole II

- Eigenschaften
 - Kristallin
 - Charakteristische Gerüche
 - Wasserstoffbrücken
 - Erhöhte Smp und Sdp im Vergleich zu Aromaten
 - Phenol: gute Löslichkeit in Wasser
 - Intramolekulare Wasserstoffbrücken möglich → ortho-Substitution

Chelat des Hydroxybenzaldehyds

Smp: 6 °C Sdp: 80 °C

Smp: 41 °C Sdp: 182 °C

Phenole III

1,4-Dihydroxybenzol (Hydrochinon) zum Chinon oxidiert

Vitamin E, Tocopherol

- Natur:
 - Beseitigung von Radikalen
 - Substrat: Vitamin E/ Tocopherol

Hydrochinon

Chinon

$$HOOH$$
 $HOOH$ $HOOH$

Vitamin C. Ascorbinsäure

- Redox-Reaktion: reversibel
- Tocopherol kann mit Ascorbinsäure regeneriert werden

Allgemeines I

- Carbonyl-Verbindungen
- Entstehen durch Oxidation von Alkoholen

Prof. Stefan Bräse - OCI SS 2023

Allgemeines II

Cyclopentancarbaldehyd

- Aldehyde entstehen aus primären Alkoholen
 - RHC=O
- Ketone entstehen aus sekundären Alkoholen
 - RR'C=O
- Nomenklatur:
 - Alkylstamm
 - Aldehyde: Endung -al oder -carbaldehyd
 - Ketone: Endung –on
 - Gebräuchliche Trivialnamen:

Formaldehyd

Acetaldehyd

Acetophenon

Butanal

Propionaldehyd Propanal

Butyraldehyd Butanal

CHO

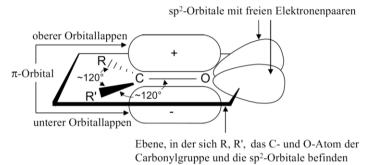
Benzaldehyd

Butanon

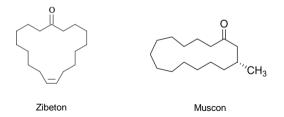
Benzophenon

Zimtaldehyd

Aceton

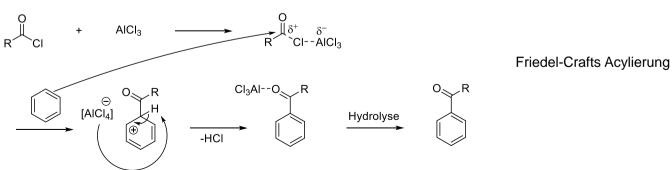

19.06.2023

Prof. Stefan Bräse - OCI SS 2023


Allgemeines III

Hybridisierung

Mittelgroße cyclische Ketone sind typische Parfümgrundstoffe


Mesomere Grenzformeln

Prof. Stefan Bräse - OCI SS 2023

Synthese I

- Oxidation von Alkoholen
- Selektive Reduktion von Carbonsäure-Derivaten
 - Schwer zu kontrollieren
- Ozonolyse
- Elektrophile Addition von Wasser an Alkine
 - Enole → Tautomere: Ketone
- Elektrophile Acylierung (Formylierung) von Aromaten → Aromatische Ketone (und Aldehyde)

Synthese II

- Benzaldehyd-Synthese:
 - Radikalische Chlorierung von Toluol:

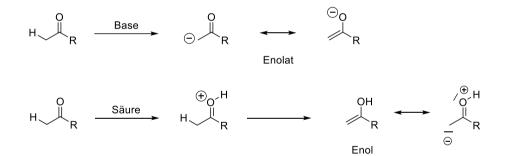
Wichtige Regeln:

KKK: Kälte, Katalysator Kern

SSS: Sonne, Siedehitze → Seitenkette

Reaktionen I

(Lewis-)Säureempfindlich:


Erhöhung des elektrophilen Charakters

- Nukleophiler Angriff:
 - z.B. Metallorganische Verbindungen, Grignard Reaktion

Karlsruher Institut für Technolog

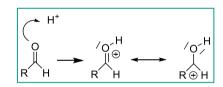
Reaktionen II

- Carbonyl-Verbindungen in α-Position acide
 - Deprotonierung Säure- oder Basen-induziert → Enole / Enolate, als Nucleophile

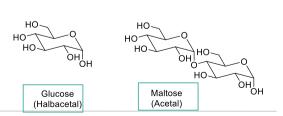
Reaktionen III

- Aldol-Reaktionen oder Aldol-Kondensation
 - Konjugierte Carbonyl-Verbindungen (α,β -ungesättigte Carbonyle / Michaelsysteme) besonders stabil
 - Kondensationen: Reaktion zweier oder mehrerer Komponenten unter Freisetzung kleiner Moleküle, z.B. Wasser

Reaktionen IV


α-Halogenierung

$$R \xrightarrow{O} R$$
 Br_2 $R \xrightarrow{O} R$


Ausbildung von Hydraten und (Halb-)Acetalen

Halbacetal

$$\begin{bmatrix} H & D & D & H & H & D & D & H \\ R & C & C & C & H & D & D & D & D \\ H & D & D & D & D & D & D & D \\ H & D & D & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D & D \\ H & D & D & D & D & D & D \\ H & D & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D & D \\ H & D & D & D & D \\ H & D & D & D & D \\ H & D$$

z.B. zur Synthese von:

Reaktionen V

■ Mit Aminen → Halbaminale → Imine

Karlsruher Institut für Technolog

Reaktionen VI

Synthese von Hydrazonen und Oximen

• An α,β -ungesättigten Carbonyl-Verbindungen konjugierter nucleophiler Angriff

Fragen?

17

19.06.2023

Prof. Stefan Bräse – OCI SS 2023 IOC & IBCS-FMS