

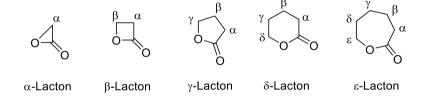
Organische Chemie I – Teil 16

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Allgemeines I

- Aus sauer katalysierter Veresterung einer Carbonsäure mit einem Alkohol
- Nomenklatur:
 - Carbonsäure und Alkylrest des Alkohols
 - Suffix: "Ester"
 - z.B. Essigsäureethylester
 - Alkylrest und Trivialnamen für Säurerest RCOO, z.B. Ethylacetat
 - IUPAC: Alkylalkanoat, z.B. Ethylethanoat
- Funktionelle Gruppe:
 - Estergruppe "-COOR"
 - Alkoxycarbonyl- oder Alkyloxycarbonyl-Gruppe

Propionsäuremethylester Methylpropionat Methylpropanoat


Stearinsäureethylester Ethylstearat Ethyloctadecanoat

Phthalsäuredimethylester Dimethylphthalat

Karlsruher Institut für Technologie

Allgemeines II

- Cyclische/intramolekulare Ester: Lactone
 - **Position des Alkohols in der Kette:** α -, β -, γ -, δ -, ε-Lacton

Karlsruher Institut für Technolog

Vorkommen

Aromastoffe

■ Fette, Öle, Wachse

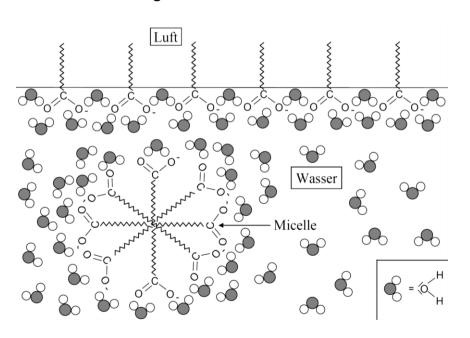
08.06.2023

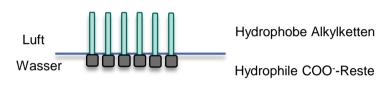
Reaktionen - Reduktionen

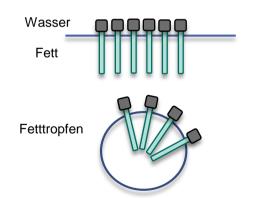
Reaktionen – Esterspaltung I

Basische Hydrolyse (Natriumhydroxid) – Verseifung

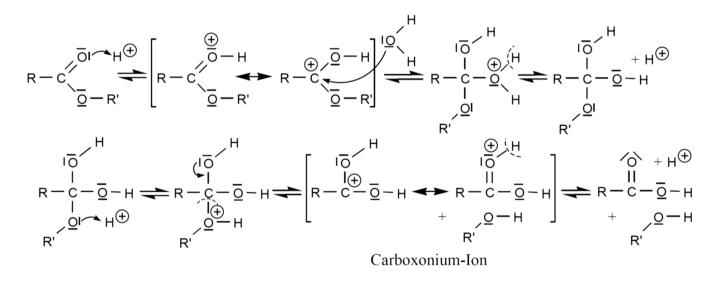
$$R - C \xrightarrow{\overline{O}} G \xrightarrow{\square} G - H \longrightarrow R - C - \overline{Q} - H \longrightarrow R - \overline{Q} - H \longrightarrow R - C - \overline{Q} - H \longrightarrow R - \overline{Q} - H \longrightarrow$$


Seifengewinnung


08.06.2023


Einschub - Seifen

Seifenwirkung



Karlsruher Institut für Technologie

Reaktionen – Esterspaltung II

Saure Hydrolyse und Umesterung

Reaktionen - CH-Azidität

$$R - \stackrel{H}{\overset{\delta_{-}}{\overset{\circ}{\bigcirc}}} \stackrel{\circ}{\overset{\circ}{\bigcirc}} OR \qquad = \left[\begin{array}{c} H \bigcirc \\ R \bigcirc \\ R \bigcirc \\ OR \end{array} \right] \stackrel{\circ}{\overset{\circ}{\bigcirc}} OR \qquad = \left[\begin{array}{c} H \bigcirc \\ R \bigcirc \\ OR \end{array} \right] + H - B$$

Reaktionen – Decarboxylierung

Reaktionen – Michael-Reaktion

Karlsruher Institut für Technologie

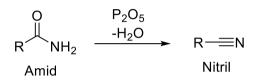
Allgemeines

Nomenklatur

Hybridisierung und Mesomerie:

Synthese

Reaktionen – Polyamide



Reaktionen - Vilsmeier-Haack Reaktion

Substituenten	Dirigierung	Aktivierung
O-	o, p	sehr stark aktiviert
NR ₂ , OR, NH ₂	o, p	stark aktiviert
R, Ar	o, p	schwach aktiviert
Н	_	
CI, Br	o, p	schwach deaktiviert
NO ₂ , COR, COX, SO ₃ H, CN	m	stark deaktiviert
NH ₃ +, NR ₃ +	m	sehr stark deaktiviert

Reaktionen – Nitrile

$$Zn(CN)_2 \xrightarrow{HCI} H \xrightarrow{HCI} H \xrightarrow{HCI} H \xrightarrow{H} AICI_4$$

Fragen?

Prof. Stefan Bräse – OCI SS 2023 IOC & IBCS-FMS