

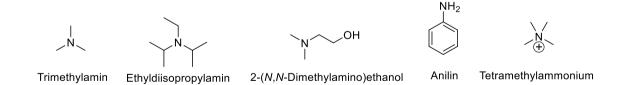

# **Organische Chemie I – Teil 18**

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme



## Übersicht




#### **Amine**



- Alkylamine oder Aminoalkane
- Aliphatische Amine sind sp³-hybridisiert
- basisch und nucleophil

$$R_{R^2}^{1/N}R^3$$
 rasch

$$R^{1}R^{2} R^{2}$$



## **Amine**



basisch und nucleophil

| Ammonium-Derivat                               | $pK_a$ |
|------------------------------------------------|--------|
| MeNH <sub>3</sub> <sup>+</sup>                 | 10.6   |
| EtNH <sub>3</sub> <sup>+</sup>                 | 10.8   |
| $Et_2NH_2^+$                                   | 11.0   |
| $Et_3NH^+$                                     | 10.8   |
| PhNH <sub>3</sub> <sup>+</sup>                 | 4.6    |
| PhCH <sub>2</sub> NH <sub>3</sub> <sup>+</sup> | 9.3    |

| Konjugierte<br>Säure                                                                                       | pK <sub>s</sub> | Konjugierte Base           |
|------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|
| $\overset{\oplus}{NH}_{4}$                                                                                 | 9.25            | INH <sub>3</sub>           |
| +I H <sub>3</sub> C-►NH <sub>3</sub> Stabg.                                                                | 10.6            | H<br>IN-←-CH₃ Destab.<br>H |
| $\stackrel{\oplus}{ \longrightarrow} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 4.6             | Stabil.                    |
| ⊕NH <sub>2</sub>                                                                                           | 8.0             | <u>r</u> - <u>Z</u> -      |

### **Amine**



Wasserstoffbrückenbindungen

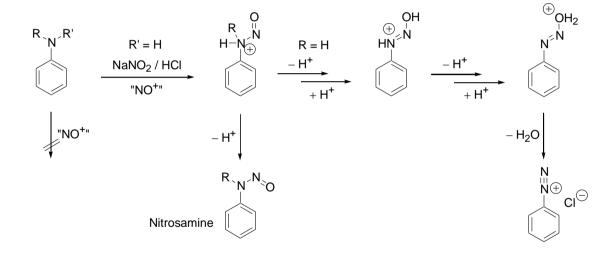
| Name                        | Formel                                                                                                  | Smt.        | Sdt.     | Name               | Formel                                        | Smt. | Sdt. |
|-----------------------------|---------------------------------------------------------------------------------------------------------|-------------|----------|--------------------|-----------------------------------------------|------|------|
| Methylamin                  | CH <sub>3</sub> NH <sub>2</sub>                                                                         | -92         | -6,5     | n-Propylamin       | C <sub>3</sub> H <sub>7</sub> NH <sub>2</sub> | -83  | 49   |
| Dimethylamin                | $(CH_3)_2NH$                                                                                            | -96         | 7        | n-Butylamin        | $C_4H_9NH_2$                                  | -50  | 78   |
| Trimethylamin               | $(CH_3)_3N$                                                                                             | -117        | 3        | Anilin             | C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub> | -6   | 184  |
| Ethylamin                   | CH <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                                                         | -80         | 17       | Diphenylamin       | $(C_6H_5)_2NH$                                | 53   | 302  |
| Diethylamin<br>Triethylamin | (CH <sub>3</sub> CH <sub>2</sub> ) <sub>2</sub> NH<br>(CH <sub>3</sub> CH <sub>2</sub> ) <sub>3</sub> N | −39<br>−115 | 55<br>89 | N,N-Dimethylanilin | N(CH <sub>3</sub> ) <sub>2</sub>              | 2,4  | 194  |

#### **Amine – Vorkommen**



HO — CH — CH2 
$$\times$$
 NHR  $\times$  NHR  $\times$  CH2CH2 — NH2 OH  $\times$  NH2 OH  $\times$  CH3)3 OH  $\times$  OH, R = CH3 - Adrenalin  $\times$  OH, R = H - Noradrenalin  $\times$  Histamin  $\times$  Ethanolamin  $\times$  Cholin  $\times$  Histamin  $\times$  Cholin  $\times$  CH2 — CH2  $\times$  CH2 — CH2  $\times$  OH  $\times$  N(CH3)3 OH  $\times$  OH

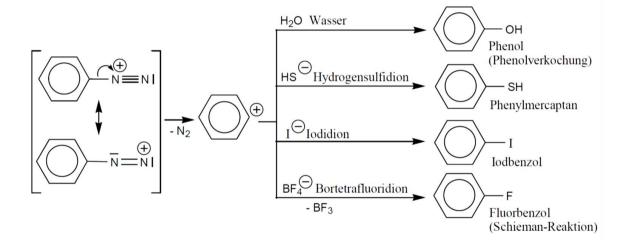
28.06.2023


# **Aminsynthese**



R Hal + NH<sub>3</sub> Base - Base · HHal R NH<sub>2</sub> R NH<sub>2</sub> Reduktion 
$$\overline{z}$$
. B. Fe / HCl  $\overline{z}$ . B. Fe / HCl  $\overline{z}$ . B. Fe / HCl

#### **Amine – Reaktionen**






# Karlsruher Institut für Technologie

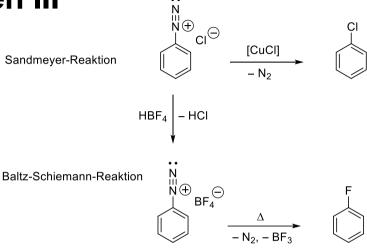
# Diazonium-Verbindungen I

- Sehr schwache Elektrophile
- N<sub>2</sub>-Abspaltung bei leichter Erhitzung

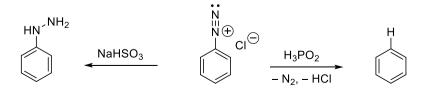


Prof. Stefan Bräse – OCI SS 2023

# Karlsruher Institut für Technologie


# Diazonium-Verbindungen II

- Reaktion mit sehr aktivierten Aromaten zu Azo-Verbindungen Azo-Kupplung
- Typischer Vertreter: Methylorange


# **Diazonium-Verbindungen III**

Diazoniumsalze als nützliche Intermediate:

Sandmeyer-Reaktion



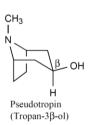
Umsetzung mit Natriumhydrogensulfit oder unterphorsphoriger Säure:



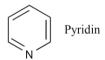
### **Alkaloide**



Alkaloide mit Pyrrolidinstruktur


Alkaloide mit Indolstruktur

Alkaloide mit Chinolinstruktur

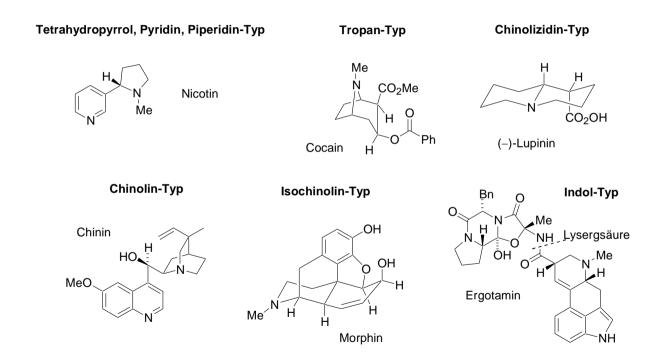

Tropan-Alkaloide



CH<sub>3</sub>
N
OH
Tropin
(Tropan-3 $\alpha$ -ol)



Alkaloide mit Pyridin- und Piperidinstruktur




Morphin- und Isochinolin-Alkaloide

$$\begin{array}{c|c}
6 & & & & & & & & & & & & \\
7 & & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & & \\
7 & & & & & & \\
7 & & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & & \\
7 & & & & & \\
7 & & & & & \\
7 & & & & & \\
7 & & & & & \\
7 & & & & & \\
7 & & & &$$

#### **Alkaloide**







# Fragen?



Prof. Stefan Bräse – OCI SS 2023