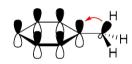


Organische Chemie I – Teil 19

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

- Sterische Effekte
 - Größe und Form von Substituenten bzw. Gruppen im Molekül
- Elektronische Effekte
 - Ergeben sich aus der ungleichmäßigen Verteilung der Elektronen im Molekül
 - I-Effekt Induktiver Effekt
 - Ergibt sich aus der Polarisierung von σ -Bindungen durch Elektronegativitätsunterschiede \rightarrow Bindungsdipol
 - +I/-I-Effekt
 - M-Effekt Mesomerer Effekt
 - Die Elektronendichte wird über π-Bindungen verändert
 - +M/-M-Effekt
 - Substituenten können auch I- und M-Effekte gleichzeitig aufweisen


Reaktivität von Nukleophilen und Elektrophilen

+I-Effekt:

- Hervorgerufen durch Substituenten mit einer geringerer Elektronegativität als Wasserstoff → Substituent schiebt Elektronen → Substituent partiell positiv geladen
- Sonderfall Alkylsubstituenten
 - Geringere EN eines sp³-C im Vergleich zu sp²-C
 - Konjugation des π-Systems mit den Elektronen der C–R-σ-Bindung im Substituenten → Hyperkonjugation
- Alkylgruppen (-CR₃), Silane (-SiR₃), Borane (-BR₂) oder Metalle wie Lithium, Magnesium oder Zink (-M)

1	II	III	IV	V	VI	VII	VIII
H 2,1				24	*		He
Li 1,0	Be 1,5	B 2,0	C 2,5	N 3,0	O 3,5	F 4,0	Ne
Na 0,9	Mg 1,2	AI 1,5	Si 1,8	P 2,1	S 2,5	CI 3,0	Ar
K 0,8	Ca 1,0	Ga 1,6	Ge 1,8	As 2,0	Se 2,4	Br 2,8	Kr
Rb 0,8	Sr 1,0	In 1,7	Sn 1,8	Sb 1,9	Te 2,1	I 2,5	Хе
Cs 0,7	Ba 0,9	TI 1,8	Pb 1,8	Bi 1,9	Po 2,0	At 2,2	Rn

-I-Effekt:

- Substituent mit einer größeren Elektronegativität als Wasserstoff → zieht Elektronen aufgrund hoher Elektronegativität zu sich → negative Partialladung → ruft bei angrenzende Atomen eine partielle Positivierung hervor
- Halogene (–X), Alkohole (–OH), Mercaptane/Thiole (–SH), Amine (–NH₂), Nitrogruppen (–NO₂) sowie ungesättigte Kohlenstoffsubstituenten (sp²-C), Carbonylgruppe (–C=O), Carboxygruppe (–COOH), Cyanogruppe (–CN)

Hyperkonjugation:

Delokalisation von Elektronen durch Überlappung aus einem σ-Bindung mit einem einfach oder unbesetzten p-Orbital

Reaktivität von Nukleophilen und Elektrophilen

M-Effekt:

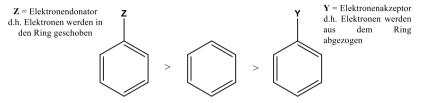
Verteilung von Elektronen in π -Bindungen – wirkt durch konjugierte Systeme, d.h. ungesättigte Bindungen oder Atome mit freien Elektronenpaaren

+M-Effekt:

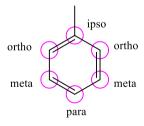
- ein freies Elektronenpaar wird zur Mesomerie zur Verfügung gestellt → Die Elektronendichte im System wird erhöht.
- -O⁻, -NH₂, -NR₂, -OH, -OR, -NH(CO)R, -O(CO)R, -(Aryl) (z. B. -Phenylgruppe), -Br, -Cl, -I, -F

$$\begin{bmatrix} H_2 \overline{C} & \longleftarrow H_2 \overline{C} & \bigoplus_{Q} CH_3 \end{bmatrix}$$

-M-Effekt:


- Substituent mit Doppel- oder Dreifachbindung → dem System wird Elektronendichte entzogen
- -COOR, -COOH, -CHO, -(CO)R, -CN, -CH=CH-COOH, -NO₂, -SO₃H

$$\begin{bmatrix} H_2 C & & & & \\ H_2 & & & & \\ \end{bmatrix} \xrightarrow{Q^0} H_2 \xrightarrow{Q^0} H_2 \xrightarrow{Q^0} \begin{bmatrix} 0 & & & \\ & & & \\ & & & \\ \end{bmatrix}$$



- Aktivierende Substituenten
 - +I- und/oder +M-Substituenten, da Elektronen in das System gegeben werden
- Desaktivierende Substituenten
 - -I- und/oder -M-Substituenten, da Elektronen abgezogen werden
- Dirigierender Effekt:
 - Position des Zweitsubstituenten wird durch den Erstsubstituenten bestimmt
 - +I- und/oder +M-Effekt: ortho- oder para-Position
 - I und/oder -M-Effekt: meta-Position

Dirigierender Effekt

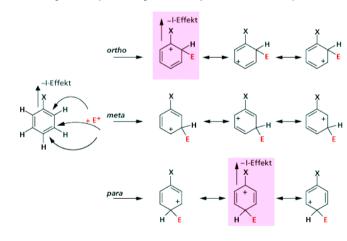
+M-Effekt:

→ o-, p-dirigierend

-M-Effekt:

→ m-dirigierend

Dirigierender Effekt


+I-Effekt:

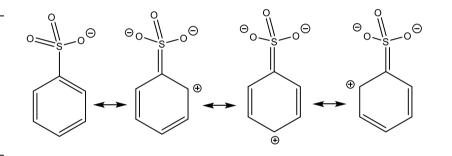
Bildung der σ-Komplexe bei Angriff des Elektrophils in ortho-, meta, und para-Positionen

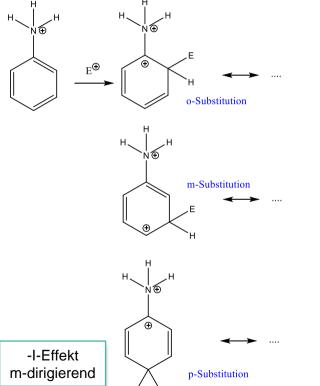
Kompensation der positiven Ladung im σ-Komplex

-I-Effekt:

Bildung der o-Komplexe bei Angriff des Elektrophils in ortho-, meta, und para-Position

Verstärkung der positiven Ladung im s-Komplex

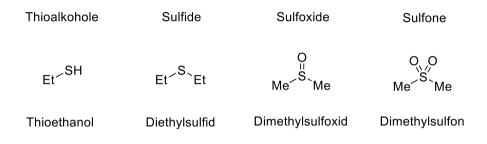

28.06.2023

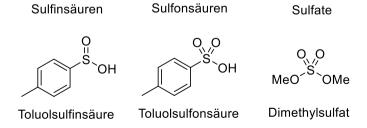

Dirigierender Effekt – Beispiele

-M-Effekt m-dirigierend

I-Effel	ĸt	M-Effekt		
+I	-1	+M	-M	
-CR ₃	-C=O	-O ⁻	-COOR	
-SiR ₃	–OH	-NH ₂	-соон	
-BR ₂	–Br, –Cl, –I, –F	-NR ₂	–СНО	
-M (Li, Zn, Mg)	-NO ₂	–ОН	–(CO)R	
	-NH2	–OR	-CN	
	-COOH	–NH(CO)R	-CH=CH-COOH	
	-CN	–O(CO)R	-NO ₂	
		–(Aryl) (z. B. –Phenylgruppe)	–SO₃H	
		–Br, –Cl, –I, –F		

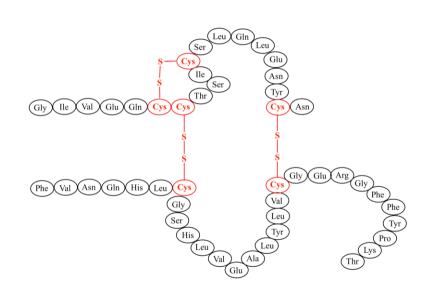
aktivierend


desaktivierend


aktivierend

desaktivierend

Übersicht



28.06.2023

Disulfide

Karlsruher Institut für Technologi

Synthesen

$$R X = \frac{H_2S / Base}{= HS^-} R SH = \frac{Base}{Thiol} R SH = \frac{Base}{Thiol} R SH = \frac{R}{S} R' = \frac$$

Benzolsulfonsäure

Acetyl-Coenzym A

- Thiocarbonsäureester
- Wichtigstes Zwischenprodukt im Zellstoffwechsel

(Phosphate sind in physiologischer Umgebung zum großen Teil deprotoniert)

Fragen?

Prof. Stefan Bräse – OCI SS 2023