

Organische Chemie I – Teil 24

Stefan Bräse Institut für Organische Chemie & Institut für Biologische und Chemische Systeme

Karlsruher Institut für Technologi

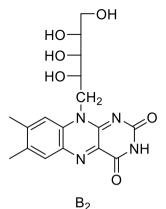
Vitamine

• "...bestimmte organische niedermolekulare Verbindungen, die für die Aufrechterhaltung der Lebensvorgänge unentbehrlich sind."

Vitamin	kommt z. B. vor in	Mangelkrankheit	Physiologische Wirkung	
A	Lebertran, Eigelb, Milch	Nachblindheit	Sehvorgang	
B_1	Getreide, Hefe, Kartof-		Coenzym der	
	feln		Pyruvatdecarboxylase	
B_2 .	Molke, Eiklar, Hefe		Wachstumsfaktor	
B_6	Hefe		Transaminierung,	
			Decarboxylierung von	
			Aminosäuren	
B_{12}	Fleisch, Leber, Milch		Blutbildung	
C	Früchte, Paprika, Kohl	Skorbut	Antioxidans	
D_2	Lebertran	Rachitis	Knochenwachstum	
E	Pflanzliche Öle		Antioxidans	
Н	Eigelb, Leber, Milch		Coenzym von Carboxylasen	
K_1			Blutgerinnung	

Prof. Stefan Bräse – OCI SS 2023

- Vitamin A
 - Lebertran, Karotte, Ei
 - Sehprozess (11-cis-Retinal)
 - Fortpflanzung (Retinsäure)
 - antikanzerogen
 - Differenzierung von Epithel und Knochengewebe


- Vitamin B₁
 - Reis, Eigelb, Bierhefe, Vollkornmehl
 - Cofaktor einiger Dehydrogenasen
 - Decarboxylierungsreaktionen
 - 1. entdecktes Vitamin
 - Isolation 1926

NH₂
$$\oplus$$
 CI OH

B₁ Thiamin

■ Vitamin B₂-Komplex

- Riboflavin
 - Milch, Käse, Fleisch, Eier
 - Redox-Cofaktor von Enzymen, die Hydroxylierungsreaktionen katalysieren
- Niacin
 - Fleisch, Kaffee, Brot, Hefe
 - NAD(P)H-Bestandteil
- Pantothensäure
 - Schweineleber, Bierhefe, Pilze, Käse
 - Coenzym A-Bestandteil
 - Teil des Acyl-Carrier-Proteins bei FS-Synthese
- Folsäure
 - Spinat, Spargel, Kohl, Getreide, Hefe
 - C1-Transfer (Methylreste, Formy-Reste...)
 - Purinsynthese

Karlsruher Institut für Technologie

Riboflavin

B₅ Pantothensäure

B₉, B₁₁ Folsäure

HO. .OH HO

 B_6

Pyridoxol

 H_2N . .OH HO

 B_6

Pyridoxamin

- Vitamin B₆
 - Bierhefe, Weizenkeime
 - Coenzym

 - Bildung von Neurotransmittern
 - C1-Übertragung

$$\begin{array}{c} R \\ H_2N \\ \hline \\ CO_2H \end{array} + \begin{array}{c} O \\ \hline \\ O \\ \hline \\ P \\ \end{array} \begin{array}{c} O \\ \hline \\ N \\ CH_3 \end{array}$$
 Pyridoxalphosphat

 B_6

Pyridoxal

.OH

HO'

Pyridoxalphosphat (PLP)

`CH₂

von Aminosäuren **IOC & IBCS-FMS**

Decarboxylierung

- Vitamin B₁₂
 - Tierische LM: Fleisch, Eier, Milchprodukte
 - Zellteilung
 - Blutbildung
 - Cofaktor bei Alkylumlagerungen
 - Methylgruppenüberträger

- Vitamin C
 - Zitrusfrüchte, Tomate, Paprika, Spinat
 - **Antioxidans**
 - Radikalfänger
 - Cofaktor von Hydroxylasen (z.B. Kollagen-Biosynthese)
 - Cofaktor von Oxydasen (z.B. Noradrenalin-Synthese)
 - Regeneration des Tocopherolderivats
 - Steigerung der Eisenresorption im Darm

Ascorbinsäure

- Vitamin D
 - D₂
 - \mathbf{D}_3
 - Schwein, Huhn, Butter, Milch
 - Calciumhomöostase
 - Antitumorwirkung
 - Infektabwehr

$$H_3$$
C
 H_3 C

- Vitamin E
 - \bullet α -, β -, γ -, δ -Tocopherol
 - Weizenkeimöl, Sonnenblumenöl
 - Schutz vor Lipidperoxidation
 - Membranstabilisierung
 - Hemmung der Thrombocytenaggregation

$$\begin{array}{c|c} R_1 \\ R_2 \\ \hline R_3 \\ \hline \end{array} \begin{array}{c} CH_3 \\ \hline CH_3 \\ \hline \end{array}$$

E Tocopherol

	R ₁	R ₂	R_3
α	CH ₃	CH ₃	CH ₃
β	CH ₃	Н	CH ₃
γ	Н	CH ₃	CH ₃
δ	Н	Н	CH ₃

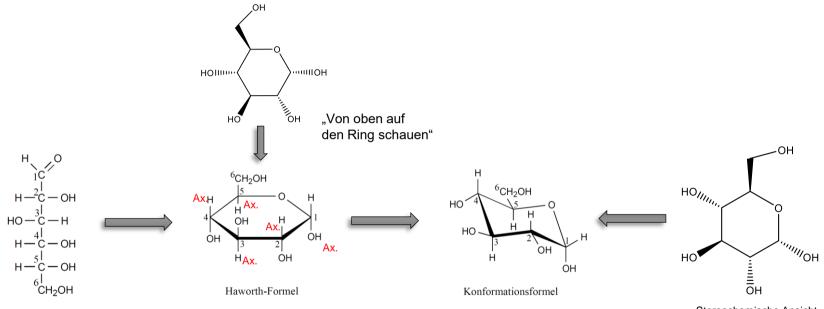
Karkruher Institut für Technolog

Vitamine

- Vitamin H: "Haut"
 - Leber, Nüsse, Sojabohnen, Schokolade
 - Carboxytransferase-Reaktionen

- Vitamin K: "Koagulation"
 - K₁ (Pflanzen)
 - K₂ (Bakterien)
 - K_3
 - K_₄
 - Grünes Blattgemüse, Früchte, Getreide, Milchprodukte
 - Blutgerinnung (Bindung von Gerinnungsfaktoren)

 K_1 Phyllochinon


 K_2 Menachinon-6

 K_3 Menadion

 K_4 2-Methyl-1,4naphtohdrochinon

Fischer - Haworth - Sessel

Fischer Projektion

Stereochemische Ansicht

Fischer Links Oben Haworth → FLOH

Axiale Positionen im Wechsel

4C₁

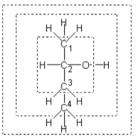
Prof. Stefan Bräse - OCI SS 2023

Chiralität – Prioritäten

- Ordnungszahl der Atome:
 - Höhere Ordnungszahl, höhere Priorität

- F-C-I Br I > Br > Cl > H
- CI-C-H

P F-C-H Br

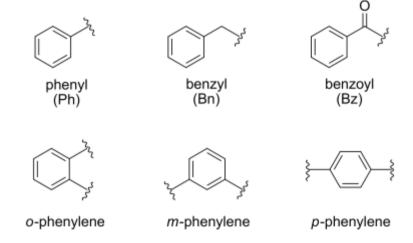

- | > (
- I > CI > C > H
- Br > F > D > H

- Zwei oder mehr gleiche Atome am stereogenen C:
 - Zweitgebundenes Atom entscheidet ggf. drittgebundenes usw.

Isotope: höhere Priorität für das Isotop mit höherer Masse.

Abstandsebenen zum Chiralitätszentrum: Sphären

Sphären O>C3>C1>H



Mehrfachbindungen: wie die entsprechende Anzahl an Einfachbindungen gewertet

$$H_{C}^{O}$$
 $HO-C-H$
 $H_{2}C-OH$
 $OH > CH=O > CH_{2}-OH > H$

Wichtige Unterscheidung

Wichtige Punkte für Klausuren/MAPs

- Hybridisierung: Kennen und Anwendungen, Konsequenzen (z. B. pKa)
- Funktionelle Gruppen alle
- Isomeren alle
- Konformeren Sessel
- Induktive und Mesomere Effekte
- Chiralität Definitionen, R/S D/L konvertieren
- Olefine isolierte/kumulierte/konjugierte
- Verschiedene Reaktionsmechanismen Bespiele, Reaktionsordnungen, Diagrammen: S/A/E
- Aromatizität: Hückel, Zweitsubstitutionen
- Chemie der Enole: Aldol, Claisen
- Diels-Alder, Ozon

Wichtige Punkte für Klausuren/MAPs

- Naturstoffklasse: mindestens jeweils ein Beispiel
- Aminosäure: Beispiele für Aminosäureklassen (z. B. Aromaten, Heterocyclen), Peptidsynthese
- Nukleinsäuren, z.B. Basenpaarung
- Zucker: Beispiel Tri- bis hin zu Hexose, Beispiel Disaccharid

18

12.07.2023

Prof. Stefan Bräse – OCI SS 2023 IOC & IBCS-FMS