Physikalische Chemie 1 - Thermodynamik

WS 2018/19

Übungsleitung: Monja Sokolov, Mila Andreeva

Name, Vorname	
Martikel-NR	
Studiengang	
Tutorium	

Aufgabe	1	2	3	Σ
Mögl. Punkte	3	7	5	15
Erreicht				

Aufgabe 1

- a) Nennen Sie die thermodynamischen Potenziale und ihre natürlichen Variablen.
- b) Warum sollten Sie für die Beschreibung eines Ausgleichsprozesses S(U,V) statt S(T,V) verwenden?

Lösung:

- a) U(S,V), H(S,p), F(T,V), G(p,T) (2 Punkte)
- b) Weil U, V die natürlichen Variablen von S sind und für U, V = const. das Gleichgewicht bei einem Maximum von S liegt. Für S(T, V) gilt kein solches Maximum-sprinzip. (1 Punkt)

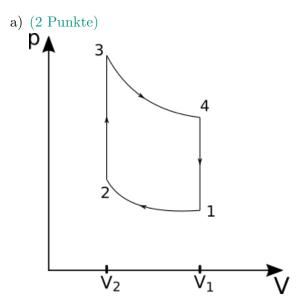
Aufgabe 2

Im Otto-Motor wird ein Kreisprozess aus den foldenden Schritten verwendet:

- Adiabatische Kompression von V_1 auf V_2 $(V_1 > V_2)$
- Isochore Erwärmung bei V_2
- \bullet Adiabatische Expansion auf V_1
- $\bullet\,$ Isochore Abkühlung bei V_1

- a) Zeichnen Sie für den Gesamtprozess ein $p\text{-}V\text{-}\mathrm{Diagramm}.$
- b) Geben Sie für jeden Teilschritt die geleistete Arbeit und die Entropieänderung an.
- c) Warum kann der Wirkungsgrad des Ottomotors den einer Carnot-Maschine nicht erreichen?

Lösung:



b) Pro Schritt jew 0.5 Punkte für ΔW und ΔS

Schritt	ΔW	$\Delta S = \int rac{\delta Q}{T}$
$1 \rightarrow 2$	$= \Delta U = c_V (T_2 - T_1)$	= 0 (adiabate)
$2 \rightarrow 3$	= 0 (isochore)	$= c_V \ln \left(\frac{T_3}{T_2} \right)$
$3 \rightarrow 4$	$= \Delta U = c_V (T_4 - T_3)$	=0
$4 \rightarrow 1$	=0	$= c_V \ln \left(\frac{T_1}{T_4}\right)$

c) Der Carnot-Wirkungsgrad ist nur für reversibel arbeitende Maschinen erreichbar - die isochoren Prozesse im Ottomotor sind irreversibel, d.h. es wird nicht alle Wärme in Arbeit umgesetzt. (1 Punkt)

Aufgabe 3a

Die Synthese von CO aus CO₂ und Kohlenstoff ist ein wichtiger großtechnischer Prozess, der bei hohen Temperaturen durchgeführt wird.

$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$

Die relevanten thermodynamischen Größen finden Sie in der folgenden Tabelle:

Stoff	$\Delta_f H_m(700\mathrm{K})$	$S_m(700\mathrm{K})$
CO_2	$-375.76{\rm kJmol^{-1}}$	$250.8\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
C(s)	$4.56\mathrm{kJ}\mathrm{mol}^{-1}$	$15.9\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
СО	$-98.50{\rm kJmol^{-1}}$	$223.1\mathrm{Jmol^{-1}K^{-1}}$

- a) Berechnen Sie für die Reaktion bei 700 K $\Delta_r H_m$, $\Delta_r S_m$ und $\Delta_r G_m$.
- b) Welche der berechneten Größen ist bei konstantem Druck und konstanter Temperatur für die Einstellung des Gleichgewichts entscheidend? Was muss für sie gelten?
- c) Welche Größe müssten Sie berechnen, wenn Sie die Reaktion bei konstanter Temperatur im geschlossenen Kolben durchführen wollen?

Lösung:

a)
$$\Delta_r H_m(700 \,\mathrm{K}) = 2 \cdot \Delta_f H_m(\mathrm{CO}, 700 \,\mathrm{K}) - \Delta_f H_m(\mathrm{CO}_2, 700 \,\mathrm{K}) - \Delta_f H_m(\mathrm{C}, 700 \,\mathrm{K})$$

 $= 2 \cdot (-98.50 \,\mathrm{kJ \, mol^{-1}}) - (-375.76 \,\mathrm{kJ \, mol^{-1}}) - 4.56 \,\mathrm{kJ \, mol^{-1}}$
 $= 174.20 \,\mathrm{kJ \, mol^{-1}} (1 \,\mathrm{Punkt})$
 $\Delta_r S_m(700 \,\mathrm{K}) = 2 \cdot S_m(\mathrm{CO}, 700 \,\mathrm{K}) - S_m(\mathrm{CO}_2, 700 \,\mathrm{K}) - S_m(\mathrm{C}, 700 \,\mathrm{K})$
 $= 2 \cdot 223.1 \,\mathrm{J \, mol^{-1} \, K^{-1}} - 250.8 \,\mathrm{J \, mol^{-1} \, K^{-1}} - 15.9 \,\mathrm{J \, mol^{-1} \, K^{-1}}$
 $= 179.5 \,\mathrm{J \, mol^{-1} \, K^{-1}} (1 \,\mathrm{Punkt})$
 $\Delta_r G_m(700 \,\mathrm{K}) = \Delta_r H_m(700 \,\mathrm{K}) - T\Delta_r S_m(700 \,\mathrm{K}) = 174.20 \,\mathrm{kJ \, mol^{-1}} - 700 \,\mathrm{K} \cdot 179.5 \,\mathrm{J \, mol^{-1} \, K^{-1}}$
 $= 48.54 \,\mathrm{kJ \, mol^{-1}} (1 \,\mathrm{Punkt})$

- b) p und T sind natürliche Variablen von G, d.h. bei konstantem p,T werden sich innere Freiheitsgrade so einstellen, dass G minimal wird (bzw. $dG \le 0$). (1 Punkt)
- c) V und T sind die natürlichen Variablen zu F, d.h. bei konstantem T,V gilt für F ein Minimumsprinzip. (1 Punkt)

Aufgabe 3b

Die Synthese von CO aus CO₂ und Kohlenstoff ist ein wichtiger großtechnischer Prozess, der bei hohen Temperaturen durchgeführt wird.

$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$

Die relevanten thermodynamischen Größen finden Sie in der folgenden Tabelle:

Stoff	$\Delta_f H_m(1100\mathrm{K})$	$S_m(1100 { m K})$
CO_2	$-354.62 \mathrm{kJ} \mathrm{mol}^{-1}$	$274.5\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
C(s)	$8.83\mathrm{kJ}\mathrm{mol}^{-1}$	$20.7\mathrm{Jmol^{-1}K^{-1}}$
СО	$-85.50{\rm kJmol^{-1}}$	$237.1\mathrm{Jmol^{-1}K^{-1}}$

- a) Berechnen Sie für die Reaktion bei 1100 K $\Delta_r H_m$, $\Delta_r S_m$ und $\Delta_r G_m$.
- b) Welche der berechneten Größen ist bei konstantem Druck und konstanter Temperatur für die Einstellung des Gleichgewichts entscheidend? Was muss für sie gelten?
- c) Welche Größe müssten Sie berechnen, wenn Sie die Reaktion bei konstanter Temperatur im geschlossenen Kolben durchführen wollen?

Lösung:

a)
$$\Delta_r H_m(1100\,\mathrm{K}) = 2 \cdot \Delta_f H_m(\mathrm{CO}, 1100\,\mathrm{K}) - \Delta_f H_m(\mathrm{CO}_2, 1100\,\mathrm{K}) - \Delta_f H_m(\mathrm{C}, 1100\,\mathrm{K})$$

 $= 2 \cdot (-85.50\,\mathrm{kJ\,mol^{-1}}) - (-354.62\,\mathrm{kJ\,mol^{-1}}) - 8.83\,\mathrm{kJ\,mol^{-1}}$
 $= 174.79\,\mathrm{kJ\,mol^{-1}}(1\,\mathrm{Punkt})$
 $\Delta_r S_m(1100\,\mathrm{K}) = 2 \cdot S_m(\mathrm{CO}, 1100\,\mathrm{K}) - S_m(\mathrm{CO}_2, 1100\,\mathrm{K}) - S_m(\mathrm{C}, 1100\,\mathrm{K})$
 $= 2 \cdot 237.1\,\mathrm{J\,mol^{-1}\,K^{-1}} - 274.5\,\mathrm{J\,mol^{-1}\,K^{-1}} - 20.7\,\mathrm{J\,mol^{-1}\,K^{-1}}$
 $= 179.0\,\mathrm{J\,mol^{-1}\,K^{-1}}(1\,\mathrm{Punkt})$
 $\Delta_r G_m(1100\,\mathrm{K}) = \Delta_r H_m(1100\,\mathrm{K}) - T\Delta_r S_m(1100\,\mathrm{K}) = 174.79\,\mathrm{kJ\,mol^{-1}} - 1100\,\mathrm{K} \cdot 179.0\,\mathrm{J\,mol^{-1}\,K^{-1}}$
 $= -22.10\,\mathrm{kJ\,mol^{-1}}(1\,\mathrm{Punkt})$

- b) p und T sind natürliche Variablen von G, d.h. bei konstantem p, T werden sich innere Freiheitsgrade so einstellen, dass G minimal wird (bzw. d $G \le 0$). (1 Punkt)
- c) V und T sind die natürlichen Variablen zu F, d.h. bei konstantem T,V gilt für F ein Minimumsprinzip. (1 Punkt)