Lösungsblatt 7 Mikroskopische Theorie

Physikalische Chemie 1 - Thermodynamik

WS 2019/20

Übungsleitung: Monja Sokolov, Mila Krämer

Aufgabe 1

Die innere Energie eines Teilchens setzt sich zusammen aus der Energie der Translation, der Rotation sowie der Schwingungsenergie. Nach dem Gleichverteilungssatz (Äquipartitionstheorem) trägt jeder Translations- bzw. Rotationsfreiheitsgrad mit $\frac{1}{2}k_BT$ zu der Gesamtenergie bei. Die Energie pro Schwingung beträgt k_BT .

- a) Bestimmen Sie für die folgenden Gase die Anzahl der Freiheitsgrade, die innere Energie sowie die Wärmekapazität unter der Annahme, dass alle Freiheitsgrade aktiv sind. Füllen Sie dazu die folgende Tabelle aus.
- b) Experimentell findet man bei Standardbedingungen deutlich kleinere Wärmekapazitäten für O_2 , H_2O , C_5H_{12} und C_6H_{12} . Können Sie erklären, warum bspw. c_V von O_2 dann nur $2.5~k_BT$ beträgt?

Molekül	Anzahl	FG_{trans}	FG_{rot}	FG_{vib}	$\frac{U}{Nk_BT}$	$\frac{c_V}{Nk_B}$
	Atome					
Helium He						
Sauerstoff O ₂						
Wasser H ₂ O (g)						
Pentan C_5H_{12} (g)						
Cyclohexan C ₆ H ₁₂ (g)						

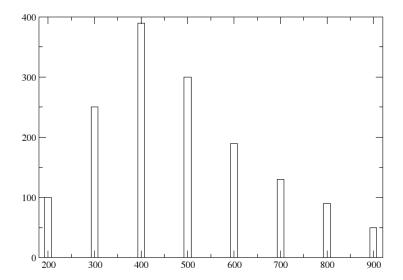
Lösung:

a)

Molekül	Anzahl	FG_{trans}	FG_{rot}	FG_{vib}	$\frac{U}{Nk_BT}$	$\frac{c_V}{Nk_B}$
	Atome					
Helium He	1	3	0	0	$\frac{3}{2}$	$\frac{3}{2}$
Sauerstoff O ₂	2	3	2	1	$\frac{7}{2}$	$\frac{7}{2}$
gasf. Wasser H ₂ O	3	3	3	3	6	6
Pentan C ₅ H ₁₂	17	3	3	45	48	48
Cyclohexan C_6H_{12}	18	3	3	48	51	51

b) Bei Raumtemperatur sind die Schwingungsfreiheitsgrade normalerweise nicht aktiv. Die Wärmekapazität von 2,5 k_BT für O_2 erhält man durch dessen Translations- und Rotationsfreiheitsgrade. (Erst bei ca 2000 K erreicht c_V 3,5 k_BT , s. Wedler und Freund, Lehr- und Arbeitsbuch Physikalische Chemie, WILEY-VCH, Weinheim 2018.)

Aufgabe 2


Mit Hilfe eines Geschwindigkeitsfilters wurden für ein Ensemble von 1500 Molekülen die folgenden Geschwindigkeiten bestimmt.

i	1	2	3	4	5	6	7	8
N_i	80	240	370	290	220	150	100	50
v [ms ⁻¹]	200	300	400	500	600	700	800	900

- a) Zeichnen Sie die Geschwindigkeitsverteilung und markieren Sie die wahrscheinlichste Geschwindigkeit.
- b) Berechnen Sie den Mittelwert und die Wurzel der mittleren quadratischen Geschwindigkeit. Zeichnen Sie die beiden Werte ebenfalls in Ihr Diagramm.

Lösung:

a) Das Maximum der Verteilung entspricht der wahrscheinlichsten Geschwindigkeit.

b)
$$\langle v \rangle = \sum_{i} \frac{v_i N_i}{N_{ges}} = \sum_{i} \frac{v_i N_i}{1500} \approx 495 \text{ms}^{-1}$$

$$\sqrt{\langle v^2 \rangle} = \sqrt{\sum_{i} \frac{v_i^2 N_i}{N_g es}} \approx 525 \text{ms}^{-1}$$

Aufgabe 3

Die Maxwell-Boltzmann-Verteilung lautet:

$$G(v) = 4\pi v^2 \left(\sqrt{\frac{m}{2\pi k_B T}}\right)^3 e^{-\frac{mv^2}{2k_B T}}$$

- a) Zeigen Sie, dass die Maxwell-Boltzmann-Verteilung normiert ist, d.h. dass $\int G(v)dv = 1$.
- b) Berechnen Sie das Maximum der Maxwell-Boltzmann-Verteilung. Wie ändert es sich mit der Temperatur?
- c) Ist die wahrscheinlichste Geschwindigkeit bei gleicher Temperatur für Helium- oder für Argonatome höher?

Hinweis:
$$\int_0^\infty x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}}$$

Lösung:

a)
$$\int_{0}^{\infty} G(v)dv = \int_{0}^{\infty} 4\pi v^{2} \left(\sqrt{\frac{m}{2\pi k_{B}T}}\right)^{3} e^{-\frac{mv^{2}}{2k_{B}T}} dv = 4\pi \left(\sqrt{\frac{m}{2\pi k_{B}T}}\right)^{3} \int_{0}^{\infty} v^{2} e^{-\frac{mv^{2}}{2k_{B}T}} dv$$
Anwenden von
$$\int_{0}^{\infty} x^{2} e^{-ax^{2}} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}, \text{ wobei } a = \frac{m}{2k_{B}T}$$

$$\int_{0}^{\infty} G(v) dv = 4\pi \left(\sqrt{\frac{m}{2\pi k_{B}T}}\right)^{3} \cdot \frac{1}{4} \sqrt{\frac{\pi}{\left(\frac{m}{2k_{B}T}\right)^{3}}}$$

$$= 4\pi \left(\sqrt{\frac{m}{2k_{B}T}}\right)^{3} \left(\sqrt{\pi}\right)^{-3} \cdot \frac{1}{4} \sqrt{\pi} \left(\sqrt{\frac{m}{2k_{B}T}}\right)^{-3}$$

$$= \pi \pi^{-\frac{3}{2}} \pi^{\frac{1}{2}}$$

$$= 1$$

b)
$$\frac{dG}{dv} = \frac{d}{dv} \left(4\pi \left(\sqrt{\frac{m}{2\pi k_B T}} \right)^3 v^2 e^{-\frac{mv^2}{2k_B T}} \right) = 0$$

$$= \frac{d}{dv} \left(v^2 e^{-\frac{mv^2}{2k_B T}} \right) = 0$$

$$= 2v e^{-\frac{mv^2}{2k_B T}} - \left[\left(-\frac{m}{2k_B T} \right) 2v e^{-\frac{mv^2}{2k_B T}} v^2 \right]$$

$$= \left(1 - v^2 \frac{m}{2k_B T} \right) 2v e^{-\frac{mv^2}{2k_B T}} = 0$$

$$= 1 - v^2 \frac{m}{2k_B T} = 0$$

$$v = \sqrt{\frac{2k_B T}{m}}$$

Je höher die Temperatur, desto höher ist die wahrscheinlichste Geschwindigkeit.

c) Heliumatome haben eine kleinere Masse als Argonatome und deswegen ist ihre wahrscheinlichste Geschwindigkeit höher als die der Argonatome.