Physikalische Chemie 1 - Thermodynamik

WS 2019/20

Übungsleitung: Monja Sokolov, Mila Krämer

Name, Vorname	
Martikel-NR	
Studiengang	
Tutorium	

Zur Erinnerung: keine Testabholung in der Übung!

Aufgabe	1	2	3	4	Σ
Mögl. Punkte	3	5	5	2	15
Erreicht					

Aufgabe 1

Geben Sie für jede der folgenden thermodynamischen Größen den vollständigen Namen an, und ob sie eine Zustands- oder eine Prozessgröße ist. (0.5 Punkte pro Teilaufgabe)

- a) U
- b) *V*
- c) p
- d) Q
- e) c_V

- $f) c_p$
- g) *H*
- h) T
- i) W

Lösung:

Zustandsgröße, Prozessgröße

a) U: innere Energie

b) V: Volumen

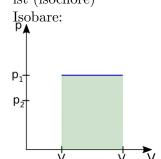
c) p: Druck

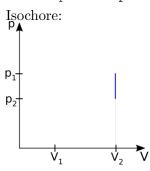
- d) Q: Wärme
- e) c_V : spez. Wärmekapazität bei V = const.
- f) c_p : spez. Wärmekapazität bei p = const.

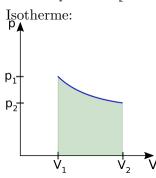
g) H: Enthalpie

h) T: Temperatur

i) W: (Volumen-)Arbeit


Aufgabe 2


Betrachtet werden folgende Prozesse an einem idealen Gas:


- Isobare bei p_1 von V_1 auf V_2 $(V_2 > V_1)$,
- Isochore bei V_2 von p_2 auf p_1 $(p_2 < p_1)$,
- Isotherme von p_1, V_1 auf p_2, V_2 .
- a) Stellen Sie die drei Prozesse schematisch in p-V-Diagrammen dar und kennzeichnen Sie die jeweils verrichtete Arbeit. Beschriften Sie die Achsen und markieren Sie jeweils Anfangsund Endpunkte des Prozesses.
- b) Berechnen Sie die am idealen Gas jeweils verrichtete Arbeit.

Lösung:

a) Je (1) Pkt für richtige Kurve, Je (1) Pkt für richtige Fläche bzw Einsicht dass die Fläche 0 ist (isochore)

b) Isobare: $\Delta W = -p_1(V_2 - V_1)$ $\stackrel{1}{\bigcirc}$ Isochore: $\Delta W = 0$ $\stackrel{1}{\bigcirc}$ Isotherme: $\Delta W = \int_{V_1}^{V_2} -p(V) dV = nRT \ln(\frac{V_2}{V_1})$ $\stackrel{1}{\bigcirc}$ für Integral, $\stackrel{1}{\bigcirc}$ für einsetzen der id. Gasgleichung)

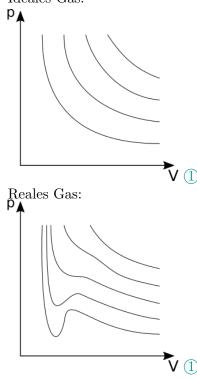
Aufgabe 3a

Im Praktikumslabor lässt jemand bei $35\,^{\circ}\mathrm{C}$ und einem Umgebungsdruck von 1 bar einen mit 1.5 mol Diethylether gefüllten Kolben fallen.

- a) Welches Volumen an Diethylether entsteht beim Verdampfen des Kolbeninhalts, wenn man den Ether als ideales Gas betrachtet?
- b) Mit der van-der-Waals-Zustandsgleichung für reale Gase kommt man auf ein Volumen von $37.5\,\mathrm{L}$. Wie groß ist der Kompressionsfaktor z unter den gegebenen Bedingungen?
- c) Skizzieren Sie für das reale und ideale Gas je ein p-V-Diagramm mit mehreren Isothermen.

2

Nützlich: $R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}, \quad 0\,^{\circ}\mathrm{C} = 273.15\,\mathrm{K}, \quad 1\,\mathrm{bar} = 10^{5}\,\mathrm{Pa}$


Lösung:

$$30\,^{\circ}\text{C} = 308.15\,\text{K}, 1\,\text{bar} = 100\,000\,\text{Pa}, n = 1.5\,\text{mol}$$
 für Umrechnung

a)
$$V = \frac{nRT}{p} = \frac{1.5 \,\text{mol} \cdot 8.31 \,\text{J} \,\text{mol}^{-1} \,\text{K}^{-1} \cdot 308.15 \,\text{K}}{100 \,000 \,\text{Pa}} = 0.038 \,\text{m}^3 = 38 \,\text{L}$$
 (1)

b)
$$z = \frac{pV_{\text{real}}}{nRT} = \frac{100\,000\,\text{Pa}\cdot0.0375\,\text{m}^3}{1.5\,\text{mol}\cdot8.31\,\text{J}\,\text{mol}^{-1}\,\text{K}^{-1}\cdot308.15\,\text{K}} = 0.976\,\text{oder}\,\,z = \frac{V_{real}}{V_{ideal}} = 0.976\,\text{\ref{1}}$$

c) Ideales Gas:

Aufgabe 3b

Im Praktikumslabor lässt jemand bei $27\,^{\circ}$ C und einem Umgebungsdruck von 1 bar einen mit $4.1\,\text{mol}$ Aceton gefüllten Kolben fallen.

- a) Welches Volumen an Aceton entsteht beim Verdampfen des Kolbeninhalts, wenn man es als ideales Gas betrachtet?
- b) Mit der van-der-Waals-Zustandsgleichung für reale Gase kommt man auf ein Volumen von $100\,\mathrm{L}$. Wie groß ist der Kompressionsfaktor z unter den gegebenen Bedingungen?
- c) Zeichnen Sie für das reale und ideale Gas je ein p-V-Diagramm mit Isothermen.

Nützlich: $R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}, \quad 0\,^{\circ}\mathrm{C} = 273.15\,\mathrm{K}, \quad 1\,\mathrm{bar} = 10^{5}\,\mathrm{Pa}$ **Lösung:**

 $30\,^{\circ}\mathrm{C} = 300.15\,\mathrm{K},\,1\,\mathrm{bar} = 100\,000\,\mathrm{Pa},\,n = 4.1\,\mathrm{mol}$ (1) für Umrechnung

a)
$$V = \frac{nRT}{p} = \frac{4.1 \,\text{mol} \cdot 8.31 \,\text{J} \,\text{mol}^{-1} \,\text{K}^{-1} \cdot 300.15 \,\text{K}}{100 \,000 \,\text{Pa}} = 0.102 \,\text{m}^3 = 102 \,\text{L}$$

b)
$$z = \frac{pV_{\text{real}}}{nRT} = \frac{100\,000\,\text{Pa}\cdot0.100\,\text{m}^3}{4.1\,\text{mol}\cdot8.31\,\text{J}\,\text{mol}^{-1}\,\text{K}^{-1}\cdot300.15\,\text{K}} = 0.978\,\text{oder}\,\,z = \frac{V_{real}}{V_{ideal}} = 0.978\,\text{Oder}\,\,z$$

c) siehe Variante a, (2)

Aufgabe 4

Drücken Sie

a)
$$p(V,T)$$

b)
$$T(p, V)$$

b)
$$T(p,V)$$
 c) $U(p,V)$ d) $U(V,T)$

d)
$$U(V,T)$$

als vollständige Differenziale aus (z.B. $\mathrm{d} p = \dots$).

Lösung: (1/2) Pkt pro Teilaufgabe, 2 Differerenziale pro Testvariante

a)
$$dp = \left(\frac{\partial p}{\partial T}\right)_V dT + \left(\frac{\partial p}{\partial V}\right)_T dV$$

b)
$$dT = \left(\frac{\partial T}{\partial p}\right)_V dp + \left(\frac{\partial T}{\partial V}\right)_p dV$$

c)
$$dU = \left(\frac{\partial U}{\partial p}\right)_V dp + \left(\frac{\partial U}{\partial V}\right)_p dV$$

d)
$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$