Physikalische Chemie 1 - Thermodynamik

WS 2019/20

Übungsleitung: Monja Sokolov, Mila Krämer

Name, Vorname	
Martikel-NR	
Studiengang	
Tutorium	

Aufgabe	1	2	3	Σ
Mögl. Punkte	4	5	6	15
Erreicht				

Aufgabe 1

- a) Nennen Sie zwei thermodynamische Potenziale und ihre natürlichen Variablen.
- b) Erklären Sie kurz, warum Sie für die Beschreibung eines Ausgleichsprozesses S(U,V) statt S(T,V) verwenden sollten.

Lösung:

- a) Zwei der folgenden Möglichkeiten: U(S, V), H(S, p), F(T, V), G(p, T) (2 Punkte)
- b) Weil U, V die natürlichen Variablen von S sind (1 Punkt) und für U, V = const. das Gleichgewicht bei einem Maximum von S liegt (1 Punkt). Für S(T, V) gilt kein solches Maximumsprinzip.

Aufgabe 2a

Die Synthese von CO aus CO_2 und Kohlenstoff laufe nach folgender Reaktionsgleichung ab:

$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$

Sie finden die Bildungsenthalpien der beteiligten Stoffe bei 800 K in der folgenden Tabelle:

Stoff	CO_2	C(s)	CO
$\Delta_f H_m(800\mathrm{K})$	$-370.70{\rm kJmol^{-1}}$	$5.36\mathrm{kJ}\mathrm{mol}^{-1}$	$-95.35 \mathrm{kJ} \mathrm{mol}^{-1}$

- a) Berechnen Sie für die Reaktion bei 800 K $\Delta_r H_m$ und $\Delta_r G_m$ ($\Delta_r S_m = 180.15 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$).
- b) Erklären Sie kurz, welche Größe für die Einstellung des Gleichgewichts entscheidend ist, wenn p und T konstant sind. Was muss für diese Größe im Gleichgewicht gelten?

Lösung:

a)
$$\Delta_r H_m(800 \,\mathrm{K}) = 2 \cdot \Delta_f H_m(\mathrm{CO}, 800 \,\mathrm{K}) - \Delta_f H_m(\mathrm{CO}_2, 800 \,\mathrm{K}) - \Delta_f H_m(\mathrm{C}, 800 \,\mathrm{K})$$

 $= 2 \cdot (-95.35 \,\mathrm{kJ \, mol^{-1}}) - (-370.70 \,\mathrm{kJ \, mol^{-1}}) - 5.36 \,\mathrm{kJ \, mol^{-1}}$
 $= 174.64 \,\mathrm{kJ \, mol^{-1}} (1 \,\mathrm{Punkt})$
 $\Delta_r G_m(800 \,\mathrm{K}) = \Delta_r H_m(800 \,\mathrm{K}) - T\Delta_r S_m(800 \,\mathrm{K}) = 174.64 \,\mathrm{kJ \, mol^{-1}} - 800 \,\mathrm{K} \cdot 180.15 \,\mathrm{J \, mol^{-1}} \,\mathrm{K^{-1}}$
 $= 30.51 \,\mathrm{kJ \, mol^{-1}} (2 \,\mathrm{Punkte})$

b) p und T sind natürliche Variablen von G, d.h. bei konstantem p, T werden sich innere Freiheitsgrade so einstellen, dass G minimal wird (bzw. $dG \le 0$). (2 Punkte)

Aufgabe 2b

Die Synthese von CO aus CO₂ und Kohlenstoff laufe nach folgender Reaktionsgleichung ab: $CO_2(g) + C(s) \longrightarrow 2 CO(g)$

Sie finden die Bildungsentropien der beteiligten Stoffe bei 1200 K in der folgenden Tabelle:

~-	are Bridgingsomerspren der secomoten steme ser 120011 in der 1018enden 14800110.			
	Stoff	CO_2	C(s)	CO
	$S_m(1200\mathrm{K})$	$278.63\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	$20.67\mathrm{Jmol^{-1}K^{-1}}$	$240.94\mathrm{Jmol^{-1}K^{-1}}$

- a) Berechnen Sie für die Reaktion bei 1200 K $\Delta_r S_m$ und $\Delta_r G_m$ ($\Delta_r H_m = 175.20 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$).
- b) Erklären Sie kurz, welche Größe für die Einstellung des Gleichgewichts entscheidend ist, wenn V und T konstant sind. Was muss für diese Größe im Gleichgewicht gelten?

Lösung:

a)
$$\Delta_r S_m(1200 \,\mathrm{K}) = 2 \cdot S_m(\mathrm{CO}, 1200 \,\mathrm{K}) - S_m(\mathrm{CO}_2, 1200 \,\mathrm{K}) - S_m(\mathrm{C}, 1200 \,\mathrm{K})$$

 $= 2 \cdot 240.94 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} - 278.63 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} - 20.67 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$
 $= 182.57 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} (1 \,\mathrm{Punkt})$
 $\Delta_r G_m(1200 \,\mathrm{K}) = \Delta_r H_m(1200 \,\mathrm{K}) - T \Delta_r S_m(1200 \,\mathrm{K}) = 175.20 \,\mathrm{kJ} \,\mathrm{mol}^{-1} - 1200 \,\mathrm{K} \cdot 182.57 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$
 $= -43.88 \,\mathrm{kJ} \,\mathrm{mol}^{-1} (2 \,\mathrm{Punkte})$

b) V und T sind die natürlichen Variablen zu F, d.h. bei konstantem T, V gilt für F ein Minimumsprinzip (die inneren Freiheitsgrade werden sich so einstellen, dass F minimal wird, bzw. $\mathrm{d}F \leq 0$) (2 Punkte)

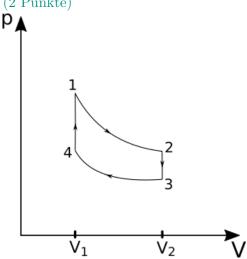
Aufgabe 3

Im Stirling-Motor wird an einem idealen Gas ein Kreisprozess aus den folgenden Schritten verwendet:

- Isotherme Expansion von V_1 auf V_2 ($V_1 < V_2$) bei T_1 .
- Isochore Abkühlung von T_1 auf T_2 $(T_1 > T_2)$ bei V_2 .
- Isotherme Kompression auf V_1 bei T_2 .
- Isochore Erwärmung auf T_1 bei V_1 .
- a) Zeichnen Sie für den Gesamtprozess ein p-V-Diagramm und beschriften Sie die Teilprozesse eindeutig.
- b) Geben Sie für jeden Teilschritt die vom System verrichtete Arbeit und die Entropieänderung im System an.

Lösung:

a) (2 Punkte)



b) Pro Schritt jew 0.5 Punkte für ΔW und
 ΔS

Schritt	ΔW	$\Delta S = \int \frac{\delta Q}{T}$
$1 \rightarrow 2$	$= -nRT_1 \ln \left(\frac{V_2}{V_1} \right)$	$= nR \ln \left(\frac{V_2}{V_1} \right)$
$2 \rightarrow 3$	= 0(isochore)	$= c_V \ln \left(\frac{T_2}{T_1} \right)$
$3 \rightarrow 4$	$= -nRT_2 \ln \left(\frac{V_1}{V_2}\right)$	$= nR \ln \left(\frac{V_1}{V_2} \right)$
$4 \rightarrow 1$	= 0	$= c_V \ln \left(\frac{T_1}{T_2}\right)$