

Informationstechnik

6. Messung stochastischer Signale

- 6.1 Stochastische Prozesse
- 6.2 Korrelationsfunktionen
- 6.3 Korrelationsmesstechnik
- 6.4 Spektrale Darstellung stochastischer Signale
- 6.5 Systemidentifikation
- 6.6 Wiener-Filter

Prof. Dr.-Ing. F. Puente León – Messtechnik

1

6.1 Stochastische Prozesse)	Karlsruher Institut für Technologie		
Interpretation:				
1. Fall: ξ ist fest, t ist variabel		$y(t, \xi_{v})$ ist eine Realisierung des stochastischen Prozesses, d. h. eine deterministische Musterfunktion		
2. Fall: ξ ist variabel, t ist fest	→	$\mathbf{y}(t_i, \xi)$ ist eine Zufallsvariable, die jedem Ereignis ξ_v den entsprechen- den Funktionswert der zugehörigen Musterfunktion zuordnet		
3. Fall: ξ ist fest, t ist fest		$y(t_i, \xi_v)$ ist ein Zahlenwert		
4. Fall: ξ ist variabel, t ist variabel		$\mathbf{y}(t, \xi)$ ist ein stochastischer Prozess, d. h. eine Schar von Musterfunktionen		
Bei stochastischen Prozessen $y(t, \xi)$ sind Wahrscheinlichkeitsverteilungen $F_y(y, t)$ und Wahrscheinlichkeitsdichten $f_y(y, t)$ abhängig von der Zeit				
8 Prof. DrIng. F. Puente León – Messtechnik		Institut für Industrielle		

6.1.2 Wahrscheinlichkeitsdichte

Definitionen 6.4–6.5: Verbundverteilung, Verbunddichte

Für zwei stochastische Prozesse $\mathbf{x}(t, \xi)$ und $\mathbf{y}(t, \xi)$ werden die Verbundverteilung und die Verbunddichte definiert, indem die Zeitabhängigkeit berücksichtigt wird:

$$\begin{split} F_{\mathbf{x}(t_1)\mathbf{y}(t_2)}(x,y) &= P(\mathbf{x}(t_1) \leq x \ \cap \ \mathbf{y}(t_2) \leq y) \\ f_{\mathbf{x}(t_1)\mathbf{y}(t_2)}(x,y) &= \frac{\partial F_{\mathbf{x}(t_1)\mathbf{y}(t_2)}(x,y)}{\partial x \partial y} \end{split}$$

Definition 6.8: Statistische Unabhängigkeit

Zwei stochastische Prozesse $\mathbf{x}(t, \xi)$ und $\mathbf{y}(t, \xi)$ nennt man statistisch unabhängig, wenn für alle Zeiten t_1 , t_2 gilt:

> $F_{\mathtt{x}(t_1) \mathtt{y}(t_2)}(x,y) = F_{\mathtt{x}(t_1)}(x) \cdot F_{\mathtt{y}(t_2)}(y)$ bzw. $f_{\mathbf{x}(t_1)\mathbf{y}(t_2)}(x, y) = f_{\mathbf{x}(t_1)}(x) \cdot f_{\mathbf{y}(t_2)}(y)$

Prof. Dr.-Ing. F. Puente León – Messtechnik

Institut für Industrielle

IIIT Informationstechnik

9

Prof. Dr.-Ing. F. Puente León - Messtechnik

Institut für Industrielle Informationstechnik

6.2 Korrelationsfunktionen	Karlsruher Institut für Technologie			
 Mit der Korrelation lässt sich die Erhaltungstendenz von st Prozessen und deren Musterfunktionen beschreiben 	tochastischen			
Damit können insbesondere zufällige Signale miteinander v werden	erglichen			
Zunächst soll aber untersucht werden, wie die Korrelation für verschiedenen Signalklassen definiert ist	ùr die			
21 Prof DrIng F. Puente León - Messtechnik	Institut für Industrielle			
	Informationstechnik			
	.1 /			
6.2.1 Signalklassen	Karlsruher Institut für Technologie			
Definition 6.22: Energiesignale				

Energiesignale sind beschränkte, stückweise stetige Signale x(t), für die gilt:

$\int_{-\infty}^{\infty} x(t) x^*(t) \, \mathrm{d}t < \infty$

→ Für die Konvergenz muss gelten:

$$\lim_{t \to \pm \infty} x(t) = 0$$

Definition 6.23: Leistungssignale

Leistungssignale sind beschränkte, stückweise stetige Signale x(t), für die das obige Integral divergiert, jedoch

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x^*(t) dt < \infty$$
 existient

6.2.4 Eigenschaften				
Eigenschaften der Auto- und Kreuzkorrelation stationärer Prozesse:				
Eigenschaften der Autokorrelationsfunktion $r_{xx}(\tau)$				
Maximalwert:	$\Re \big\{ r_{\mathbf{x}\mathbf{x}}(\tau) \big\} \leq r_{\mathbf{x}\mathbf{x}}(0) = \sigma_{\mathbf{x}}^2 + \mu_{\mathbf{x}}^2$			
Symmetrie:	$r_{\mathtt{x}\mathtt{x}}(au)$ = $r^*_{\mathtt{x}\mathtt{x}}(- au)$			
Unkorreliertheit für $ \tau \to \infty$:	$\lim_{ \tau \to \infty} r_{\mathbf{x}\mathbf{x}}(\tau) = \mu_{\mathbf{x}}^2$			
Periodische Funktionen (T: Periode):	$r_{\rm xx}(\tau)$ = $r_{\rm xx}(\tau+T)$			
Eigenschaften der Kreuzkorrelationsfunktion $r_{xy}(\tau)$				
Maximalwert:	$\Re \{ r_{xy}(\tau) \} \leq \frac{1}{2} (r_{xx}(0) + r_{yy}(0))$			
Symmetrie:	$r_{\mathrm{xy}}(\tau)$ = $r_{\mathrm{yx}}^*(-\tau) \neq r_{\mathrm{xy}}^*(-\tau)$			
Unkorreliertheit für $ \tau \to \infty$:	$\lim_{ \tau \to \infty} r_{xy}(\tau) = \mu_x \cdot \mu_y^*$			
Unkorreliertheit von $x(t)$ und $y(t)$:	$r_{\mathtt{x}\mathtt{y}}(au) = \mu_{\mathtt{x}} \cdot \mu_{\mathtt{y}}^* \forall \ au$			

IIIT Informationstechnik

- 6.3.2 Ähnlichkeit von Signalen, Laufzeitmessung
- 6.3.3 Closed-loop-Korrelation
- 6.3.4 Polaritätskorrelation
- 6.3.5 Ähnlichkeit von Spektren, Doppler-Frequenz-Messung
- 6.3.6 Selbstähnlichkeit

33

Prof. Dr.-Ing. F. Puente León – Messtechnik

6.3.3 Closed-loop-Korrelation

Nachteile der Laufzeitkorrelation

Das Ergebnis der Korrelation

$$\hat{r}_{xy}(\tau) = \frac{1}{2T} \int_{-T}^{T} x(t+\tau) y(t) \,\mathrm{d}t$$

steht immer erst am Ende des Integrationsintervalls zur Verfügung. Die Bestimmung des Zeitpunktes τ_{max} ist dadurch sehr träge. Für dynamische Messgrößen ist das Verfahren schlecht geeignet.

Das Verfahren ist numerisch sehr aufwendig. Zum einen müssen die Produkte der zeitverschobenen Signale $x(t + \tau) \cdot y(t)$ gebildet werden, zum anderen muss nach der Integration noch eine Maximumsuche durchgeführt werden.

IIIT Informationstechnik

6.4 Spektrale Darstellung stochastischer Signale

- 6.4.1 Leistungsdichtespektrum
- 6.4.2 Rauschen

51

- 6.4.3 Überlagerung zufälliger Störsignale
- 6.4.4 Übertragung stochastischer Signale durch LTI-Systeme

Prof. Dr.-Ing. F. Puente León – Messtechnik

IIIT Informationstechnik

6.6 Wiener-Filter

- 6.6.1 Signalmodell
- 6.6.2 Herleitung des Wiener-Filters
- 6.6.3 Wiener-Filter bei linearer Verzerrung und additivem Rauschen

Prof. Dr.-Ing. F. Puente León – Messtechnik

6.6 Wiener-Filter		Karlsruher Institut für Technologie		
Signalschätzung				
Die Signalschatzung befasst sich mit der Rekonstruktion von Signalen, die durch ein nichtideales System verändert und durch überlagerte Störungen verfälscht wurden. Das Wiener-Filter ist ein Optimalfilter dafür.				
Anwendungsgebiete:				
Messtechnik:	Messung des Zeitverlaufes des Mes Messung beeinflusst den zu messer verfälscht somit das Originalsignal. F Messfehler (Rauschen) auf.	ssignals. Jede iden Vorgang und ⁻ erner treten		
Signalübertragung:	Verfälschung des Sendesignals durc idealen Eigenschaften des Übertrag Zusätzlich kommen Störungen hinzu	ch die nicht- ungskanals. J.		
Speicherung:	Veränderung eines Signals, um den des Datenträgers zu genügen (Abta Quantisierung). Diese Effekte könne Rauschen modelliert werden.	Erfordernissen stung, en durch		
78 Prof. DrIng. F. Pue	ente León – Messtechnik	Institut für Industrielle		

77

