



#### **Bauelemente der Elektrotechnik**

#### Prof. Dr. rer. nat. Sebastian Kempf Wintersemester 2021/22



#### www.kit.edu





#### **Bauelemente der Elektrotechnik**

#### Halbleiterphysik Wintersemester 2021/22

#### www.kit.edu



#### Elementhalbleiter



|             | 58 140,12          | 59 140,91                | 60 144,24           | 61 (146)                | 62 150,36              | 63 151,96                | 64 157,25              | 65 158,93              | 66 162,50               | 67 164,93            | 68 167,26           | 69 168,93            | 70 173,05             | 71 174,97             |
|-------------|--------------------|--------------------------|---------------------|-------------------------|------------------------|--------------------------|------------------------|------------------------|-------------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------|
| Lanthanoide | Ce                 | Pr                       | Nd                  | Pm                      | Sm                     | Eu                       | Gd                     | Tb                     | Dv                      | Но                   | Er                  | Tm                   | Yb                    | Lu                    |
|             | Cer<br>1,12 6,77   | Praseodym<br>1,13 6,48   | Neodym<br>1,14 7,01 | Promethum<br>1,13 7,22  | Samarium<br>1,17 7,54  | Europium<br>1,2     5,25 | Gadolinium<br>1,2 7,89 | Terbium<br>1,1 8,25    | Dysprosium<br>1,22 8,55 | Holmium<br>1,23 8,78 | Erbium<br>1,24 9,05 | Thulium<br>1,25 9,32 | Ytterbium<br>0,0 6,97 | Lutetium<br>1,27 9,84 |
|             | 90 232,04          | 91 231,04                |                     | 93 (237)                | 94 (244)               | 95 (243)                 | 96 (247)               | 97 (247)               | 98 (251)                | 99 (252)             | 100 (257)           | 101 (258)            | 102 (259)             | 103 (262)             |
| Actinoide   | Th                 | Pa                       | U                   | Np                      | Pu                     | Am                       | Cm                     | Bk                     | Cf                      | Es                   | Fm                  | Md                   | No                    | Lr                    |
|             | monum<br>1,5 11,72 | Protactinium<br>1,3 15,4 | Uran<br>1,36 18,95  | Neptunium<br>1,38 20,45 | Pluconium<br>1,3 19,82 | Americium<br>1,28 13,67  | Cunum<br>1,3 13,51     | Berkellum<br>1,3 14,78 | Californium<br>1,3 15,1 | Einsteinium<br>1,3 ? | Fermium<br>1,3      | Mendelevium<br>1,3 ? | Nobellum<br>1,3 ?     | Lawrencium<br>1,3 ?   |



### Verbindungshalbleiter



- IV-IV-Verbindungshalbleiter: Hochfrequenzelektronik
  SiC, SiGe
- III-V-Verbindungshalbleiter: Laserdioden bzw. LEDs im UV-Bereich, Solarzellen mit hohem Wirkungsgrad
  - Nitride: GaN, AIN, InN, BN
  - Phosphide: GaP, AIP, InP,
  - Arsenide: GaAs, AIAs, InAs, BAs
  - Antimonide: GaSb, AISb, InSb
  - Ternäre/Quaternäre Verbindungen: AlGaAs, AlInAs, GaAsP, GaInN, GaInP, AlGaAsSb, GaInAsP
- II-VI-Verbindungshalbleiter: Halbleiterlaser im kurzwelligen Spektralbereich, Solarzellen
  - Sulfide: ZnS, CdS, HgS
  - Telluride: CdTe
  - Selenide: ZnS, CdSe
  - Ternäre Verbindungen: (Zn,Cd)Se, Zn(S,Se), (Be,Zn)Se, (Be,Cd)Se
- IV-VI-Verbindungshalbleiter: Infrarot-Detektoren, Wärmebildkameras
  - PbS, PbSe, PbTe



#### **Direkte und indirekte Halbleiter**







# Optische Absorption bei direkten und indirekten Halbleitern







### Quadratische Näherung der Bandstruktur







### Quadratische Näherung der Bandstruktur







## **Bandstruktur und effektive Masse von Si**







## **Bandstruktur und effektive Masse von Si**







#### Bandstruktur am Valenzbandmaximum









## Effektive Massen von Elektronen und Löchern

| Halbleiter | $m_{\rm e}^*/m$ | $m_{\rm et}^*/m$ | $m_{\rm el}^*/m$ | $m_{\rm lh}^*/m$ | $m_{\rm hh}^*/m$ | $m_{\rm soh}^*/m$ | $\Delta$ (eV) |
|------------|-----------------|------------------|------------------|------------------|------------------|-------------------|---------------|
| Si         |                 | 0.19             | 0.98             | 0.16             | 0.49             | 0.24              | 0.044         |
| Ge         |                 | 0.081            | 1.59             | 0.043            | 0.33             | 0.084             | 0.295         |
| GaAs       | 0.063           |                  |                  | 0.082            | 0.51             | 0.14              | 0.341         |
| GaSb       | 0.041           |                  |                  | 0.04             | 0.4              | 0.15              | 0.80          |
| GaP        |                 | 1.12             | 0.22             | 0.14             | 0.79             | 0.25              | 0.08          |
| InAs       | 0.023           |                  |                  | 0.026            | 0.41             | 0.16              | 0.41          |
| InP        | 0.073           |                  |                  | 0.089            | 0.58             | 0.17              | 0.11          |
| InSb       | 0.014           |                  |                  | 0.015            | 0.43             | 0.19              | 0.81          |



## Zustandsdichten, Fermi-Funktion und chemisches Potential im intrinsischen Halbleiter









### Intrinsische Ladungsträgerkonzentration



*n*<sub>i</sub> / cm<sup>-3</sup>

1.5×10<sup>10</sup>

2.3×10<sup>13</sup>

1.3×10<sup>6</sup>

 $N_{\rm V}$  / cm<sup>-3</sup>

1.0×10<sup>19</sup>

6×10<sup>18</sup>

7×10<sup>18</sup>





## Donatoren und Akzeptoren



**Donatoren** = Atome, die ein Bindungselektron mehr besitzen als das Wirtsgitteratom, welches sie ersetzen.

Überschüssiges Elektron wird nicht zur chemischen Bindung benötigt und kann sich daher frei durch den Kristall bewegen.



#### Akzeptoren

**Akzeptoren** = Atome, die ein Bindungselektron weniger besitzen als das Wirtsgitteratom, welches sie ersetzen.

Das zur Bindung fehlende Elektron wird simultan mit einem Loch erschaffen, das sich frei im Kristall bewegen kann.







#### Ionisationsenergien





#### Vereinfachte Darstellung der Energieniveaus bei Dotierung







## Ideale dotierte Halbleiter

 $T = 0 \,\mathrm{K}$ 





Kar



 $T \neq 0 \,\mathrm{K}$ 









## Reale dotierte Halbleiter und Kompensation









## Ladungsträgerdichte und chemisches Potential







## Ladungsträgerdichte und chemisches Potential

| n-Halbleiter           | Ladungsträgerdichte                                                                                        | Chemisches Potential                                                                                                      |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Kompensationsbereich   | $n \simeq \frac{n_{\rm D} \mathcal{N}_{\rm L}}{n_{\rm A}} \exp\left(-\frac{E_{\rm d}}{k_{\rm B} T}\right)$ | $\mu \simeq E_{\rm L} - E_{\rm d} + k_{\rm B} T \ln \left(\frac{n_{\rm D}}{n_{\rm A}}\right)$                             |  |  |  |
| Störstellenreserve     | $n \simeq \sqrt{n_{\rm D} \mathcal{N}_{\rm L}} \exp\left(-\frac{E_{\rm d}}{2k_{\rm B} T}\right)$           | $\mu \simeq E_{\rm L} - \frac{E_{\rm d}}{2} - \frac{k_{\rm B}T}{2} \ln\left(\frac{\mathcal{N}_{\rm L}}{n_{\rm D}}\right)$ |  |  |  |
| Störstellenerschöpfung | $n \simeq n_{\rm D}$                                                                                       | $\mu \simeq E_{\rm L} - k_{\rm B} T \ln \left(\frac{\mathcal{N}_{\rm L}}{n_{\rm D}}\right)$                               |  |  |  |
| Eigenleitung           | $n \simeq \sqrt{\mathcal{N}_{\rm L} \mathcal{N}_{\rm V}} \exp\left(-\frac{E_{\rm g}}{2k_{\rm B}T}\right)$  | $\mu \simeq E_{\rm V} + \frac{1}{2}E_{\rm g} + \frac{3}{4}k_{\rm B}T\ln\left(\frac{m_{\rm p}}{m_{\rm n}}\right)$          |  |  |  |





## Beweglichkeit von Elektronen und Löchern









#### Verschiedene Prozesse bei der Generation bzw. Rekombination über Störstellenniveaus





#### **Thermionische Emission**











#### Quantenmechanischer Tunneleffekt







## Driftgeschwindigkeit für Silizium



|       | Elektronen             | Löcher                 |  |  |  |  |
|-------|------------------------|------------------------|--|--|--|--|
| Vs    | 10 <sup>7</sup> cm/s   |                        |  |  |  |  |
| $E_0$ | 7×10 <sup>3</sup> V/cm | 2×10 <sup>4</sup> V/cm |  |  |  |  |
| γ     | 2                      | 1                      |  |  |  |  |



# Driftgeschwindigkeit für direkte und indirekte Halbleiter









### Driftgeschwindigkeit bei direkten Halbleitern

Beispiel: GaAs





#### **Stoßionisation und Lawineneffekt**







### Ionisationsraten











#### **Bauelemente der Elektrotechnik**

#### Prof. Dr. rer. nat. Sebastian Kempf Wintersemester 2021/22



#### www.kit.edu