

Bauelemente der Elektrotechnik

Prof. Dr. rer. nat. Sebastian Kempf Wintersemester 2021/22

Bauelemente der Elektrotechnik

Halbleiterphysik Wintersemester 2021/22

Elementhalbleiter

Verbindungshalbleiter

- IV-IV-Verbindungshalbleiter: Hochfrequenzelektronik
 - SiC, SiGe
- III-V-Verbindungshalbleiter: Laserdioden bzw. LEDs im UV-Bereich, Solarzellen mit hohem Wirkungsgrad
 - Nitride: GaN, AlN, InN, BN
 - Phosphide: GaP, AIP, InP,
 - Arsenide: GaAs, AlAs, InAs, BAs
 - Antimonide: GaSb, AlSb, InSb
 - Ternäre/Quaternäre Verbindungen: AlGaAs, AllnAs, GaAsP, GalnN, GalnP, AlGaAsSb, GalnAsP
- II-VI-Verbindungshalbleiter: Halbleiterlaser im kurzwelligen Spektralbereich, Solarzellen
 - Sulfide: ZnS, CdS, HgS
 - Telluride: CdTe
 - Selenide: ZnS, CdSe
 - Ternäre Verbindungen: (Zn,Cd)Se, Zn(S,Se), (Be,Zn)Se, (Be,Cd)Se
- IV-VI-Verbindungshalbleiter: Infrarot-Detektoren, Wärmebildkameras
 - PbS, PbSe, PbTe

WiSe 2021/22

Direkte und indirekte Halbleiter

Optische Absorption bei direkten und indirekten Halbleitern

Quadratische Näherung der Bandstruktur

BdE: Halbleiterphysik

Quadratische Näherung der Bandstruktur

Bandstruktur und effektive Masse von Si

Bandstruktur und effektive Masse von Si

Bandstruktur am Valenzbandmaximum

Effektive Massen von Elektronen und Löchern

Halbleiter	$m_{\rm e}^*/m$	$m_{\rm et}^*/m$	$m_{\rm el}^*/m$	$m_{\rm lh}^*/m$	$m_{\rm hh}^*/m$	$m_{\rm soh}^*/m$	Δ (eV)
Si		0.19	0.98	0.16	0.49	0.24	0.044
Ge		0.081	1.59	0.043	0.33	0.084	0.295
GaAs	0.063			0.082	0.51	0.14	0.341
GaSb	0.041			0.04	0.4	0.15	0.80
GaP		1.12	0.22	0.14	0.79	0.25	0.08
InAs	0.023			0.026	0.41	0.16	0.41
InP	0.073			0.089	0.58	0.17	0.11
InSb	0.014			0.015	0.43	0.19	0.81

Zustandsdichten, Fermi-Funktion und chemisches Potential im intrinsischen Halbleiter

Intrinsische Ladungsträgerkonzentration

Eigenschaften bei T = 300 K				
	N _L / cm ⁻³	$N_{ m V}$ / cm ⁻³	n _i / cm ⁻³	
Si	2.8×10 ¹⁹	1.0×10 ¹⁹	1.5×10 ¹⁰	
Ge	1.0×10 ¹⁹	6×10 ¹⁸	2.3×10 ¹³	
GaAs	4.3×10 ¹⁷	7×10 ¹⁸	1.3×10 ⁶	

Donatoren und Akzeptoren

Donatoren

Donatoren = Atome, die ein Bindungselektron mehr besitzen als das Wirtsgitteratom, welches sie ersetzen.

Überschüssiges Elektron wird nicht zur chemischen Bindung benötigt und kann sich daher frei durch den Kristall bewegen.

Akzeptoren

Akzeptoren = Atome, die ein Bindungselektron weniger besitzen als das Wirtsgitteratom, welches sie ersetzen.

Das zur Bindung fehlende Elektron wird simultan mit einem Loch erschaffen, das sich frei im Kristall bewegen kann.

Ionisationsenergien

Vereinfachte Darstellung der Energieniveaus bei Dotierung

Ideale dotierte Halbleiter

Reale dotierte Halbleiter und Kompensation

Ladungsträgerdichte und chemisches Potential

Ladungsträgerdichte und chemisches Potential

n-Halbleiter Ladungsträgerdichte		Chemisches Potential		
Kompensationsbereich	$n \simeq \frac{n_{\mathrm{D}} \mathcal{N}_{\mathrm{L}}}{n_{\mathrm{A}}} \exp\left(-\frac{E_{\mathrm{d}}}{k_{\mathrm{B}} T}\right)$	$\mu \simeq E_{\mathrm{L}} - E_{\mathrm{d}} + k_{\mathrm{B}} T \ln \left(\frac{n_{\mathrm{D}}}{n_{\mathrm{A}}} \right)$		
Störstellenreserve	$n \simeq \sqrt{n_{\mathrm{D}} \mathcal{N}_{\mathrm{L}}} \exp \left(-\frac{E_{\mathrm{d}}}{2k_{\mathrm{B}}T}\right)$	$\mu \simeq E_{\mathrm{L}} - \frac{E_{\mathrm{d}}}{2} - \frac{k_{\mathrm{B}}T}{2} \ln \left(\frac{\mathcal{N}_{\mathrm{L}}}{n_{\mathrm{D}}} \right)$		
Störstellenerschöpfung	$n \simeq n_{\mathrm{D}}$	$\mu \simeq E_{\mathrm{L}} - k_{\mathrm{B}} T \ln \left(\frac{\mathcal{N}_{\mathrm{L}}}{n_{\mathrm{D}}} \right)$		
Eigenleitung	$n \simeq \sqrt{\mathcal{N}_{\rm L} \mathcal{N}_{\rm V}} \exp\left(-\frac{E_{\rm g}}{2k_{\rm B}T}\right)$	$\mu \simeq E_{\mathrm{V}} + \frac{1}{2}E_{\mathrm{g}} + \frac{3}{4}k_{\mathrm{B}}T\ln\left(\frac{m_{\mathrm{p}}}{m_{\mathrm{n}}}\right)$		

Beweglichkeit von Elektronen und Löchern

Verschiedene Prozesse bei der Generation bzw. Rekombination über Störstellenniveaus

Thermionische Emission

Quantenmechanischer Tunneleffekt

Driftgeschwindigkeit für Silizium

	Elektronen	Löcher	
V _s	10 ⁷ cm/s		
E_0	7×10 ³ V/cm	2×10 ⁴ V/cm	
γ	2	1	

Driftgeschwindigkeit für direkte und indirekte Halbleiter

Driftgeschwindigkeit bei direkten Halbleitern

Beispiel: GaAs

Stoßionisation und Lawineneffekt

Ionisationsraten

WiSe 2021/22

Bauelemente der Elektrotechnik

Prof. Dr. rer. nat. Sebastian Kempf Wintersemester 2021/22

