

Felix Pistorius

pistorius@kit.edu


Karlsruher Institut für Technologie (KIT)

Übung - Digitaltechnik

3. Übung

www.kit.edu

Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

41 64 64 69 65 72 65 6E 20 53 69 65 20 69 6D 20 42 43 44 2D 43 6F 64 65 3A 20 33 32 38 20 2B 20 37 33 39

1.1 Obige Aufgabe ist hexadezimal im ASCII-Code codiert. Führen Sie die Aufgabe durch.

ASCII-Zeichentabelle

HEX	00	10	20	30	40	50	60	70
00	NUL	DLE	SP	0	@	Р	`	p
01	SOH	DC1	!	1	A	Q	a	q
02	STX	DC2	"	2	В	R	b	r
03	ETX	DC3	#	3	С	S	С	s
04	EOT	DC4	\$	4	D	Т	d	t
05	ENQ	NAK	%	5	Е	U	e	u
06	ACK	SYN	&	6	F	V	f	v
07	BEL	ЕТВ	,	7	G	W	g	w
08	BS	CAN	(8	Н	X	h	х
09	НАТ	EM)	9	Ι	Y	i	У
0A	LF	SUB	*	:	J	Z	j	Z
0B	VT	ESC	+	;	K	[k	{
ОС	FF	FS	,	<	L	\	1	I
0D	CR	GS	-	=	M]	m	}
0E	SO	RS		>	N	↑	n	~
0F	SI	US	/	?	О	\rightarrow	О	DEL

z.B.:

ASCII Code = 41 Hex

entspricht ,A'

41 64 64 69 65 72 65 6E 20 53 69 65 20 69 6D 20 42 43 44 2D 43 6F 64 65 3A 20 33 32 38 20 2B 20 37 33 39

1.1 Obige Aufgabe ist hexadezimal im ASCII-Code codiert. Führen Sie die Aufgabe durch.

```
41 64 64 69 65 72 65 6E 20 53 69 65 20 69 6D 20 42 43 44 2D A d d i e r e n S i e i m B C D -
```

```
43 6F 64 65 3A 20 33 32 38 20 2B 20 37 33 39
```

 $C \circ d e : 3 2 8 + 7 3 9$

Die Aufgabe lautet: "Addieren Sie im BCD-Code: 328 + 739"

BCD-Code

	BCD-		BCD-			1	7-Segment-Anzeige
	Code		Code		BCD-Decoder	a b	a
						С	f b
0	0000	10	1010			d	9
1	0001	11	1011			е	
2	0010	12	1100			f	e c
3	0011	13	1101			g	
4	0100	14	1110				
5	0101	15	1111				
6	0110			` Pse	eudotetrac	le	
7	0111	V					
8	1000						
9	1001		•	Dezim	naler Zahl	enberei	ch

Addition im BCD - Code

- Bei der Addition zweier BCD-Dekaden sind drei Fälle zu beachten:
 - Tritt <u>kein</u> Übertrag <u>und keine</u> Pseudotetrade auf
 - Einfaches addieren ohne Korrektur
 - Tritt ein Übertrag auf
 - so muss "6_D" zur Ergebnisdekade addiert werden.
 - ergibt sich als Resultat <u>eine</u> Pseudotetrade
 - so muss "6_D" zur Ergebnisdekade addiert werden und eventuell eine "1_D" zur Übertragungsdekade

Dezimal	BCD - Code
8	1000
+ 9	1001
	1
	0001 0001
+ Übertrag	0110
= 17	0001 0111

= 13	0001 0011
+ PSD	1 0110
	1101
	0110
+ 6	0110
7	0111
<u>Dezimal</u>	BCD - Code

Addition im Stibitz - Code

- Bei der Addition zweier Stibitz-Dekaden sind zwei Fälle zu beachten:
 - Tritt <u>kein</u> Übertrag auf
 - > so muss "3_D" abgezogen werden
 - dies entspricht einer Addition von "1101_B" ohne Übertrag
 - Tritt ein Übertrag auf
 - > so muss "3" addiert werden
 - dies entspricht einer Addition von "0011_B" ohne Übertrag

= 13	0100	
+	1101	0011
	0111	0011
	1	
+ 9	0011	1100
4	0011	0111
<u>Dezimal</u>	Stibitz	- Code

Dezimal	Stibitz - Code
3	0110
+ 4	0111
	1101
+ Ohne Ü.	1101
= 7	1010

■ Die Aufgabe lautet: "Addieren Sie im BCD-Code: 328 + 739"

	Dezimal		BCD	-Code		
	328		0011	0010	1000	
+	739		0111	0011	1001	
			111	11	1	_ Ziffern-Übertrag
			1010	0110	0001	Zwischenergebnis
+		,	10110		0110	Korrektur
=	1067	0001	0000	0110	0111	
	wegen Pseudotetrade					en Übertrag



 1.2 Führen Sie das Gleiche nach Umwandlung in den STIBITZ-Code durch.

	Dezimal	STIBITZ-Code	
	328	0011 0110 0101 101	<u> </u>
+	739	0011 1010 0110 1100)
		111 11 1111	Ziffern-Übertrag
		0111 0000 1100 0111	Zwischenergebnis
+		1101 0011 1101 001	Korrektur
=	1067	0100 0011 1001 /1010	<u> </u>
		Übertrag: + 00	11

Sonst: -0011 oder +1101

Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Schwierigkeiten bei BCD - Addition

- Beispiel: Addition von 339_D und 662_D im BCD Code
 - ggf. mehrmalige Korrektur notwendig

		0011	0011	1001	339 _D
	+	0110	0110	0010	+ 662 _D
		11	11		_
		1001	1001	1011	Pseudotetrade
Korrektur:				+0110	
			1	11	
		1001	1010	0001	Pseudotetrade
Korrektur:			+0110		
		1	11		
		1010	0000	0001	Pseudotetrade
Korrektur:		+0110			
	1	11			
Endergebnis:	0001	0000	0000	0001	1001 _D

Addition im Stibitz - Code

- Beispiel: Addition von 339_D und 662_D im Stibitz- Code
 - <u>Bei Übertrag:</u> 0011_B muss addiert werden
 - Ohne Übertrag: es muss 0011_B abgezogen werden, was durch Addition von 1101_B ohne Übertrag erreicht werden kann

Endergebnis: 0100 0011 0011 0100 1001_D

4-Bit-Dualcodes

Code	Dezimal	BCD	Stibitz	Aiken
0000	0	0	PSD	0
0001	1	1	PSD	1
0010	2	2	PSD	2
0011	3	3	0	3
0100	4	4	1	4
0101	5	5	2	PSD
0110	6	6	3	PSD
0111	7	7	4	PSD
1000	8	8	5	PSD
1001	9	9	6	PSD
1010	10	PSD	7	PSD
1011	11	PSD	8	5
1100	12	PSD	9	6
1101	13	PSD	PSD	7
1110	14	PSD	PSD	8
1111	15	PSD	PSD	9

Symmetrie-Eigenschaften

■ BCD – Code

Dezimal	0	1	2	3	4
BCD	0000	0001	0010	0011	0100
BCD	1001	1000	0111	0110	0101
Dezimal	9	8	7	6	5

Stibitz - Code

Dezimal	0	1	2	3	4
STIBITZ	0011	0100	0101	0110	0111
STIBITZ	4400				
3110112	1100	1011	1010	1001	1000

Subtraktion im BCD – Code

■ Bsp. 53 – 16 im BCD - Code

Ergebnis positiv!!!

Dezimal	BCD-	Code	
53	0101	0011	
+ 84	1000	0100	
	1101	0111	
+	1 0110		
37	0011	0111	
Wegen	Übertrag ist d	las	

Wie wird das 10er-Komplement gebildet?!?! 100 – 16 = 84

Ziffern-Übertrag

Zwischenergebnis

Korrektur

Subtraktion im Stibitz - Code

■ Bsp. 53 – 16 im Stibitz - Code

	Dezimal		Stibitz -	-Code	
	53		1000	0110	
+	(-16)		1011	0111	
		(1	11	
			0011	1101	
+			0011	1101	
	37		0110	1010	

Wegen Übertrag ist das Ergebnis positiv!!!

Wie wird das 10er-Komplement gebildet?!?! Stibitz-Code invertieren + 1_B (nur einmal!)

Ziffern-Übertrag

Zwischenergebnis

Korrektur

Subtraktion im BCD – Code

■ Bsp. 16 – 53 im BCD - Code

Dezimal	BCD-	Code	
16	0001	0110	
+ 47	0100	0111	
(100-53 = 47)		11	Ziffern-Übertrag
	0101	1101	Zwischenergebnis
+	<u> </u>	0110	Korrektur
63	0110	0011	Zwischenergebnis
Abermals muss das 10er-Komplement gebildet werden !!! 100 – 63 = 37		KEINEM Übertraç is negativ!!!	g ist das
-37	0011	0111	Endergebnis


Subtraktion im Stibitz – Code

■ Bsp. 16 – 53 im Stibitz - Code

Dezimal	Stibitz - Code	
16	0100 1001	
+ (- 53)	0111 1010	
	0 1111	Ziffern-Übertrag
	1100 0011	Zwischenergebnis
+	1101 0011	Korrektur
63	1001 0110	Zwischenergebnis
Abermals muss das		
10er-Komplement	Wegen KEINEM Übertrag ist das	
gebildet werden !!!	Ergebnis negativ!!!	
Invertieren + 1 _B		
	0440 4040	Franka mara karata
-37	0110 1010	Endergebnis

Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

K2-Darstellung

- Vorschrift:
 - Positives Zeichen: Voranstellen einer führenden ,0'
 - Negatives Zeichen: Voranstellen einer führenden ,0' beim betragsgleichen positiven Zeichen, Invertieren aller Bits, Addition von 1_B
- K2-Darstellung vereinfacht Subtraktion stark (entspricht Addition einer negativen Zahl):

dezimal	K2	Vorsicht bei	dezimal	K2
4	0100 Überläufen:	5	0101	
+ <u>(-3)</u>	+ 1101		+ 3	+0011
1	10001	Ü	-8 berlauf	1000

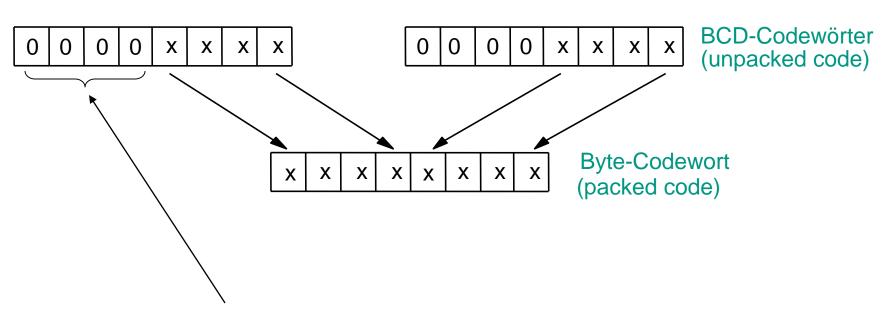
- Ggf. auftretende Carry-Outs im Ergebnis werden abgeschnitten
- Das so erhaltene Ergebnis liegt seinerseits in K2-Darstellung vor

Im Speicher eines Digitalrechners ist folgende Bitkombination abgelegt:

00011001 01010100 10011000 00110000.

Es gibt verschiedene Möglichkeiten, diese Bitkombination zu interpretieren. Geben Sie die jeweils dazugehörenden Werte als Dezimalzahl an:

2.1 Interpretieren Sie die Bitkombination als BCD-Zahl.
Handelt es sich um "packed code" oder "unpacked code"?



Kompakte Darstellung von BCD-Zahlen

Dezimalstelle 2

Dezimalstelle 1

Bei unpacked BCD-Darstellung sind immer vier führende Nullen zu finden!!!

Im Speicher eines Digitalrechners ist folgende Bitkombination abgelegt:

00011001 01010100 10011000 00110000.

Es gibt verschiedene Möglichkeiten, diese Bitkombination zu interpretieren. Geben Sie die jeweils dazugehörenden Werte als Dezimalzahl an:

2.1 Interpretieren Sie die Bitkombination als BCD-Zahl. Handelt es sich um "packed code" oder "unpacked code"?

Es kann sich hier nur um "packed code" handeln, da bei keinem der vier Bytes vier führende Nullen vorhanden sind.

Interpretation der Bitkombinationen:

0001	1001	0101	0100	1001	1000	0011	0000
1	9	5	4	9	8	3	0

Ergebnis: 19 549 830_D

2.2 Interpretieren Sie die Bitkombinationen als 16-bit Dualzahlen.

0001 1001

0101 0100

1001 1000

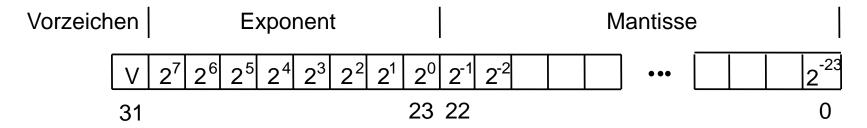
0011 0000

Zusammenfassen und umwandeln von jeweils 16 Bits zu einer dezimalen Zahl:

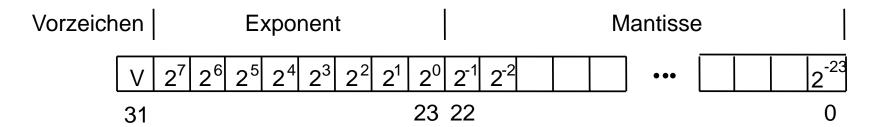
0001 1001 0101 0100
$$a_D = 2^{12} + 2^{11} + 2^8 + 2^6 + 2^4 + 2^2 = 6484_D$$
1001 1000 0011 0000
$$a_D = 2^{15} + 2^{12} + 2^{11} + 2^5 + 2^4 = 38960_D$$

Hier ist eine Interpretation als negative Zahl in K2-Darstellung möglich:

Komplementbildung:

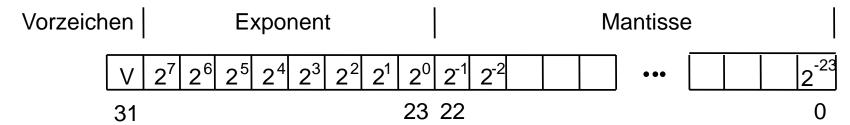

$$1001\ 1000\ 0011\ 0000 = 0110011111001111_{B} + 1_{B} = 0110011111010000_{B}$$
$$= 26\ 576_{D} = > -26\ 576_{D}$$

2.3 Interpretieren Sie die Bitkombination als IEEE-Fließkommazahl.


Zahlendarstellung gemäß IEEE- Standard:

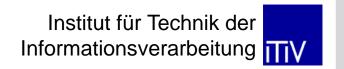
Exponent E	Mantisse M	Wert
255	≠ 0	ungültig
255	0	- 1 ^V · ∞
0 < E < 255	M	- 1 ^V · 2 ^{E-127} · (1,M)
0	≠ 0	- 1 ^V · 2 · ⁻¹²⁶ · (0,M)
0	0	- 1 ^V · 0

- 2.3 Interpretieren Sie die Bitkombination als IEEE-Fließkommazahl.
- Zahlendarstellung gemäß IEEE- Standard:


Bitkombination

00011001 01010100 10011000 00110000

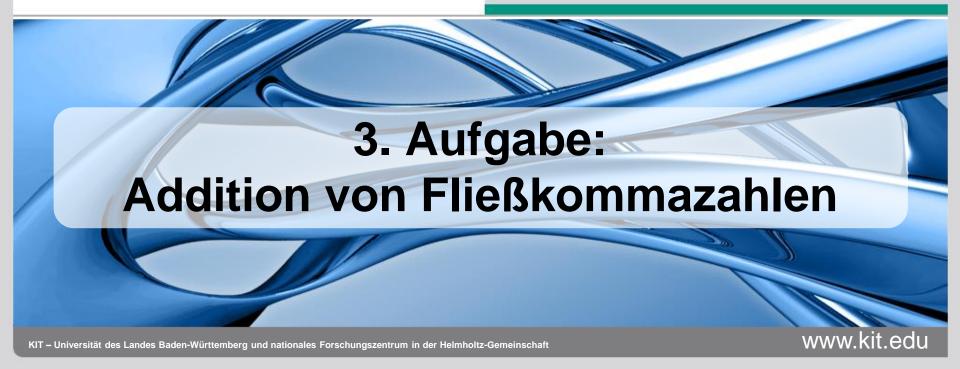
2.3 Interpretieren Sie die Bitkombination als IEEE-Fließkommazahl.



Bitkombination

0 00110010 10101001001100000110000

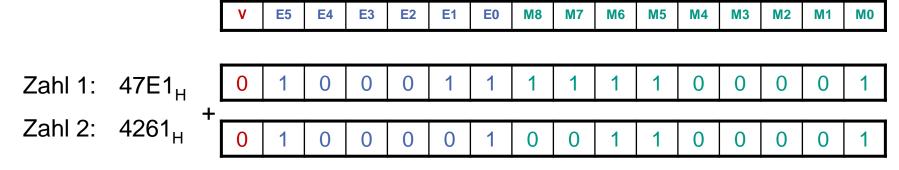
Vorzeichen =>
$$V = 0$$
 => positiv
Exponent => $E = 2^5 + 2^4 + 2^1 = 50$
Mantisse => $2^{-1} + 2^{-3} + 2^{-5} + 2^{-8} + 2^{-11} + 2^{-12} + 2^{-18} + 2^{-19}$
= 0,6608943939208984375
=> $(-1)^{V} \cdot 2^{E-127} \cdot 1,M = (-1)^{0} \cdot 2^{50-127} \cdot 1,6608943939208984375$
= $1 \cdot 2^{-77} \cdot 1,6608943939208984375$
= $1,099087713719502731198500611483 \cdot 10^{-23}$



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

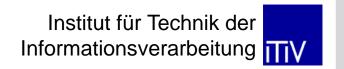


- Ein 16 bit Mikroprozessor verwendet zum Speichern großer Zahlen eine 16-Bit-Fließkommadarstellung.
- Die Zahlendarstellung erfolgt mit 1-Bit-Vorzeichen, 6-Bit-Exponent und 9-Bit-Mantisse.
- Berechnen Sie die Summe der beiden Fließkommazahlen, indem Sie beide Zahlen auf den selben Exponenten umrechnen und dann die Mantissen addieren.
- Geben Sie das Ergebnis in 16-Bit-Fließkommadarstellung an und geben Sie auch alle Zwischenschritte an.

16-Bit-Exponentialzahl = $-1^{\vee} \cdot 2^{(E-31)} \cdot (1,M)$

	V	E5	E4	E3	E2	E1	E0	M8	M7	M6	M5	M4	M3	M2	M1	MO
Zahl 1: 47E1 _H																
Zahl 2: 4261 _H																

Zahl 2:
$$+2^{(33-31)} \cdot 1,001100001 = +2^{(35-31)} \cdot 0,01001100001$$


$$= 10,00111100101_{B} = 2^{1} \cdot 1,0001111100_{B}$$

(Mantisse auf 9 Stellen gekürzt!)

Ergebnis:
$$=> + 2^{(35-31)} \cdot 2^1 \cdot 1,000111100$$

$$= +2^{(36-31)} \cdot 1,000111100$$

Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Bemerkung

Potenzmenge: Menge aller Untermengen inkl. der Menge ø

Kartesisches Produkt: S x T, Menge aller geordneten Paare (s,t) mit s ∈ S, t ∈ T, nicht kommutativ => S x T ≠ T x S

Leere Menge ist Untermenge jeder beliebigen Menge

- Auf der Grundmenge G = { a, b, c, d, e, 1, 2, 3 } seien zwei Mengen gegeben:
- $A = \{ x \mid x \in G, x = a \text{ oder } (x-3)^2 = 1 \text{ oder } x^3 = 27 \}$ und
- B = { a, b, c, 2 }
- 4.1 Wie lauten die Elemente x der Menge A?

$$(x-3)^2 = 1$$
 => x = 2 oder 4 (nicht in G)
x³ = 27 => x = 3

$$=> A = \{ a, 2, 3 \}$$

- Auf der Grundmenge G = { a, b, c, d, e, 1, 2, 3 } seien zwei Mengen gegeben:
- $A = \{ x \mid x \in G, x = a \text{ oder } (x-3)^2 = 1 \text{ oder } x^3 = 27 \}$ und
- B = { a, b, c, 2 }
- 4.2 Bilden Sie die Potenzmengen P(A) und P(B).

$$A = \{ a, 2, 3 \}$$

$$P(A) = \{ \{ \}, \{ a \}, \{ 2 \}, \{ 3 \}, \{ a,2 \}, \{ a,3 \}, \{ 2,3 \}, \{ a,2,3 \} \}$$

$$B = \{ a, b, c, 2 \}$$

- Auf der Grundmenge G = { a, b, c, d, e, 1, 2, 3 } seien zwei Mengen gegeben:
- $A = \{ x \mid x \in G, x = a \text{ oder } (x-3)^2 = 1 \text{ oder } x^3 = 27 \}$ und
- B = { a, b, c, 2 }
- 4.3 Bilden Sie die kartesischen Produkte A x B und B x A.

$$A = \{ a, 2, 3 \}$$
 $B = \{ a, b, c, 2 \}$

$$A \times B = \{ (a, a), (a, b), (a, c), (a, 2), (2, a), (2, b), (2, c), (2, 2), (3, a), (3, b), (3, c), (3, 2) \}$$

B x A = {
$$(a, a), (a, 2), (a, 3), (b, a), (b, 2), (b, 3), (c, a), (c, 2), (c, 3), (2, a), (2, 2), (2, 3) }$$

- Auf der Grundmenge G = { a, b, c, d, e, 1, 2, 3 } seien zwei Mengen gegeben:
- $A = \{ x \mid x \in G, x = a \text{ oder } (x-3)^2 = 1 \text{ oder } x^3 = 27 \}$ und
- B = { a, b, c, 2 }
- 4.4 Bilden Sie bezüglich der Grundmenge G das Komplement C_G ($A \cup B$).

$$A = \{ a, 2, 3 \}, B = \{ a, b, c, 2 \}$$

$$C_G(A \cup B) = C_G(\{a, b, c, 2, 3\}) = \{d, e, 1\}$$

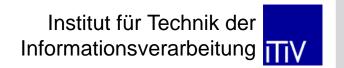
- Auf der Grundmenge G = { a, b, c, d, e, 1, 2, 3 } seien zwei Mengen gegeben:
- $A = \{ x \mid x \in G, x = a \text{ oder } (x-3)^2 = 1 \text{ oder } x^3 = 27 \}$ und
- B = { a, b, c, 2 }
- 4.5 Sind folgende Aussagen wahr oder falsch?
 - a) $\{2, a\} \in B$
 - b) $a \in B \times A$
 - c) $\{2, a\} \in A \times B$
 - d) $\{a, a\} \subseteq A \times B$
 - e) $\emptyset \subset P(A)$

f)
$$\emptyset \in P(A)$$

g)
$$\{2,a\}\subseteq P(B)$$

h)
$$\{2,a\} \in P(B)$$

i)
$$|A \times B| = |B \times A|$$


j)
$$|P(A \cap B)| = 2^2$$

k)
$$| \emptyset | = 0$$

$$|P(\emptyset)| = 0$$

$$m) \mid P(\emptyset) \mid = \emptyset$$

Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Zweistellige Relationen α auf einer Menge M

Eigenschaften:

• reflexiv: $x \alpha x, \forall x \in M$

symmetrisch: aus $x \alpha y$ folgt $y \alpha x, \forall x, y \in M$

antisymmetrisch: aus x α y und y α x folgt x = y, \forall x, y \in M

• transitiv: aus x α y und y α z folgt x α z, \forall x, y, z \in M

- Ordnungsrelation (Zeichen: ≤)
 - reflexiv
 - antisymmetrisch
 - Transitiv
- Äquivalenzrelation (Zeichen: ≡)
 - reflexiv
 - symmetrisch
 - transitiv
- Verträglichkeitsrelation (Zeichen: ~)
 - reflexiv
 - symmetrisch
 - nicht transitiv

Zur Auswertung der letzten DT-Klausur wurden die untenstehenden Aussagen gemacht, wobei a und b Elemente der Menge M aller Teilnehmer/innen seien.

Bestimmen Sie Eigenschaften und Art der Aussagen:

5.1 "a hat die gleiche Note wie b."

reflexiv?

√

 $a \alpha a$

symmetrisch?

/

 $a \alpha b = > b \alpha a$

transitiv?

 \checkmark

 $a \alpha b, b \alpha c \Rightarrow a \alpha c$

=> Äquivalenzrelation

Zur Auswertung der letzten DT-Klausur wurden die untenstehenden Aussagen gemacht, wobei a und b Elemente der Menge M aller Teilnehmer/innen seien.

Bestimmen Sie Eigenschaften und Art der Aussagen:

5.2 "a ist mindestens so gut wie b."

reflexiv? \checkmark a α a symmetrisch? \star a α b $\neq >$ b α a transitiv? \checkmark a α b, b α c => a α c

=> Quasiordnung

Zur Auswertung der letzten DT-Klausur wurden die untenstehenden Aussagen gemacht, wobei a und b Elemente der Menge M aller Teilnehmer/innen seien.

Bestimmen Sie Eigenschaften und Art der Aussagen:

5.3 "a ist durchgefallen."

Es handelt sich um eine Mengenoperation: Teilmenge von M.

Zur Auswertung der letzten DT-Klausur wurden die untenstehenden Aussagen gemacht, wobei a und b Elemente der Menge M aller Teilnehmer/innen seien.

Bestimmen Sie Eigenschaften und Art der Aussagen:

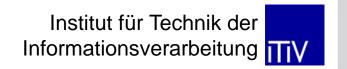
5.4 "a und b liegen weniger als eine ganze Note auseinander."

reflexiv? \checkmark a α a \Rightarrow symmetrisch? \checkmark a α b = > b α a transitiv? \Rightarrow a α b, b α c \Rightarrow a α c

=> Verträglichkeitsrelation

Zur Auswertung der letzten DT-Klausur wurden die untenstehenden Aussagen gemacht, wobei a und b Elemente der Menge M aller Teilnehmer/innen seien.

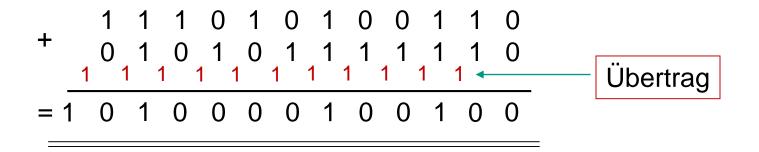
Bestimmen Sie Eigenschaften und Art der Aussagen:


5.5 "a behauptet, die Klausur sei zu schwer gewesen."

Es handelt sich um eine Mengenoperation:

Teilmenge von M, typischerweise eine leere Menge ©

Felix Pistorius


pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

- Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
- 6.1 Addition im Dualsystem

- Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
- 6.2 Multiplikation im Dualsystem

1110 1010 x 1011

=

- Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
- 6.2 Multiplikation im Dualsystem

					1	1	1	0	1	0	1	0	
					1	1	1	0	1	0	1	0	1
+				1	1	1	0	1	0	1	0		1
+			0	0	0	0	0	0	0	0			0
+		1	1	1	0	1	0	1	0				1
-	1	1	1	1	1	1	1						
=	1	0	1	0	0	0	0	0	1	1	1	0	

Verknüpfung entspricht:

$$\cdot 2^0$$
 UND - Operation

$$\cdot 2^{1}$$
 UND + LShift um eine Stelle

$$\cdot 2^3$$
 UND + LShift um drei Stellen

- Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
- 6.3 Subtraktion im Dualsystem

-	_	_	_	_	0	_	_	_

	0	1	1	1	0	1	1	0	
-	1	0	0	1	1	0	0	1	

=

■ 6.3 Subtraktion im Dualsystem

		1	1	0	1	0	0	1	0	a
		1	0	1	1	0	1	0	1	b
		1	1	0	1	0	0	1	0	a
+		0	1	0	0	1	0	1	1	Zweierk. von
	1	1					1			Übertrag
=	1	0	0	0	1	1	1	0	1	
=		0	0	0	1	1	1	0	1	С

b

■ 6.3 **Subtraktion** im **Dualsystem**

	0	1	1	1	0	1	1	0	a
	1	0	0	1	1	0	0	1	b
	0	1	1	1	0	1	1	0	_
+	0	1	1	0	0	1	1	1	Zweierk. von b
	1	1			1	1			Übertrag
=	1	1	0	1	1	1	0	1	С
	0	0	1	0	0	0	1	1	Zweierk. von c

■ 6.4 Addition im Hexadezimalsystem

=	Е	4	1	Е	D	0	С	4
	1	1		1	1			
+	2	D	Α	9	D	4	В	2
	В	6	7	4	F	С	1	2

Dez	Bin	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

_				
Dez	Bin	Hex		
8	1000	8		
9	1001	9		
10	1010	А		
11	1011	В		
12	1100	С		
13	1101	D		
14	1110	E		
15	1111	F		