



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Übung - Digitaltechnik

5. Übung

www.kit.edu



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

1. Aufgabe

- Zeigen Sie, dass folgende Gleichungen gelten:
- 1.1 $(a \& b) \lor (a \& b) \lor (b \& \overline{c}) = (a \& c) \lor (b \& \overline{c})$ indem Sie beide Seiten zur DNF erweitern.
- 1.2 $(a \& b) \lor (a \equiv b) = (a \lor b)$ indem Sie beide Seiten zur KNF erweitern.
- Hinweis für unterschiedliche Schreibweisen:

$$(ab) = (a \& b) = (a \land b)$$
$$(a+b) = (a \lor b)$$

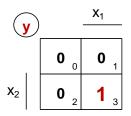
Herleitung der Normalformtheoreme

Symmetriediagramme:

Konjunktion

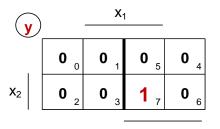
n = 2

$$y = x_2 & x_1$$



$$n = 3$$

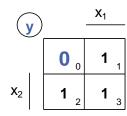
$$y = x_3 & x_2 & x_1$$



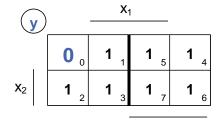
 X_3

Disjunktion

$$y = x_2 V x_1$$

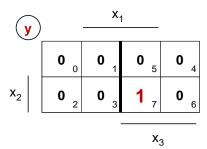


$$y = x_3 V x_2 V x_1$$



Beliebige Einsstelle:

Konjunktion:
$$y = x_3 & x_2 & x_1$$



Modifikation der Konjunktion

Beliebige Einsstelle: y = ?

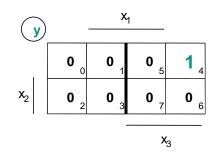


Abbildung der **Belegung**

 X_3

 $y = x_3 \& \overline{x_2} \& \overline{x_1}$

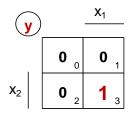
Herleitung der Normalformtheoreme

Symmetriediagramme:

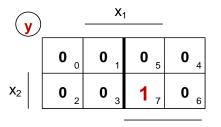
Konjunktion

n = 2

$$y = x_2 & x_1$$



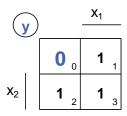
$$n = 3$$
 $y = x_3 & x_2 & x_1$



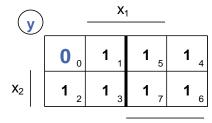
 X_3

Disjunktion

$$y = x_2 V x_1$$



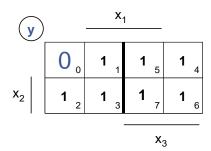
$$y = x_3 V x_2 V x_1$$



 X_3

Beliebige Nullstelle:

Disjunktion:
$$y = x_3 V x_2 V x_1$$



Modifikation der Konjunktion

Beliebige Nullstelle: y = ?

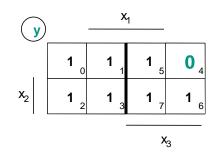


Abbildung der Belegung

$$y = \overline{x_3} \vee x_2 \vee x_1$$

Grundalgen

Konjunktion: UND-Verknüpfung, &

Disjunktion: ODER-Verknüpfung, V

■ **KNF**:
$$y = \sum_{j=0}^{2^{-1}} (f_j \vee M_j)$$
 => UND-Verknüpfung aller Maxterme (Nullblöcke)

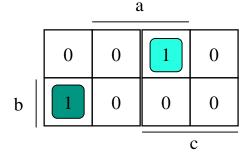
Bsp.: $y = (\bar{a} \lor b \lor \bar{c}) \& (a \lor \bar{b} \lor c)$

	1	1	0	1
b	0	1	1	1

c

DNF: $y = \bigvee_{j=0}^{2^{-1}} (f_j \& m_j)$ => ODER-Verknüpfung aller Minterme (Einsblöcke)

Bsp.: $y = (\bar{a} \& b \& \bar{c}) \lor (a \& \bar{b} \& c)$



Normalformtheorem: Hauptsatz der Schaltalgebra

Hauptsatz der Schaltalgebra:

Satz: Jede **beliebige Schaltfunktion** y = f(x_n, ..., x₁) läßt sich als **Disjunktion** von **Mintermen** <**Konjunktion** von **Maxtermen**> **eindeutig** darstellen. In der **Disjunktion** <**Konjunktion**> treten genau diejenigen **Minterme** <**Maxterme**> auf, die zu den Einsstellen <Nullstellen> der Schaltfunktion gehören.

<u>Beispiel:</u> $y = f(x_4, x_3, x_2, x_1) = 1$, wenn die Oktalzahl durch 3 dividierbar ist

- → nur mit den 3 Grundverknüpfungen (Operatoren) Konjunktion, Disjunktion und Negation ist es möglich jede beliebige Schaltfunktion darzustellen
 - → [&, V,-] ist ein Basissystem der Schaltalgebra

1. Aufgabe – 1.1

$$(a \& b) \lor (a \& c) \lor (b \& c) = (a \& c) \lor (b \& c)$$

$$(a \& b) \lor (a \& c) \lor (b \& c) = (a \& b \& 1) \lor (a \& 1 \& c) \lor (1 \& b \& c)$$

$$= [a \& b \& (c \lor c)] \lor [a \& (b \lor b) \& c] \lor [(a \lor a) \& b \& c]$$

$$=[abc \lor abc] \lor [abc \lor abc] \lor [abc \lor abc]$$

$$(a \& c) \lor (b \& c) = (a \& 1 \& c) \lor (1 \& b \& c)$$

$$= [a \& (b \lor b) \& c] \lor [(a \lor a) \& b \& c]$$

$$= abc \lor a\bar{b}c \lor ab\bar{c} \lor \bar{a}b\bar{c}$$

$$\begin{bmatrix} abc \lor ab$$

1. Aufgabe – 1.2

$$(a \& b) \lor (a \not\equiv b) = (a \lor b)$$

$$(a \& b) \lor (a \not\equiv b) = (a \& b) \lor (a \& \overline{b}) \lor (\overline{a} \& b)$$

$$= [(a \lor a) \& (a \lor \overline{b}) \& (a \lor b) \& (b \lor \overline{b})] \lor (\overline{a} \& b)$$

$$= a \lor (\overline{a} \& b)$$

$$= a \lor b$$

$$a \lor b = a \lor b$$



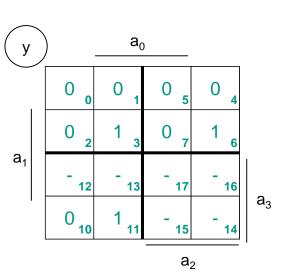
Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Freistellen ("don't cares")

- "unvollständig definierte Schaltfunktion": es ist mindestens eine Don't-Care-Belegung (Freistelle) vorhanden (siehe Beispiel rechts)
- Ergibt sich bei Eingangsbelegungen, die schaltungsbedingt nie auftreten können



- Daher: Zuordnung eines beliebigen Werts aus $f_j \in \{0, 1\}$ möglich
- Bei geschicktem Eins- oder Nullsetzen dieser Freistellen: mitunter erhebliche Vereinfachung des Ausdrucks (einfache Realisierung mit wenigen Logikelementen wird angestrebt)
- Die geschickte Wahl von Eins- und Nullstellen ist durch bloßes "Hinsehen" nur für sehr kleine Ordnungen n möglich
- Beim Nelson-Verfahren werden Freistellen dazu verwendet, die Blockgröße zu erhöhen

2. Aufgabe

- Ein Hörsaal sei mit vier Glühlampen beleuchtet. Vier Sensoren (g₁ bis g₄) melden mit 0 die Funktion, mit 1 den Ausfall einer Glühlampe.
- Entwickeln Sie eine Schaltfunktion f(g₁, g₂, g₃, g₄), die beim Ausfall von mindestens zwei Glühlampen den Hausmeister alarmiert (f=1). Wenn alle Glühlampen funktionieren, darf der Hausmeister nicht unnötig belästigt werden (f=0). Beim Ausfall genau einer Glühlampe darf er, muss aber nicht informiert werden.
- 2.1 Stellen Sie eine Funktionstabelle für f auf.

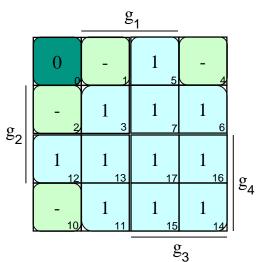
2. Aufgabe – 2.1

- 2.1 Stellen Sie eine Funktionstabelle für f auf.
- Vorgehensweise
 - Funktionswert f=0, wenn alle
 Variablen gleich Null sind => alle
 Glühlampen sind funktionsfähig.
 - Funktionswert f=1/0, d.h. unbestimmt oder "don`t care", mit einem Strich gekennzeichnet, falls nur eine Variable gleich Eins ist => eine Glühlampe ist defekt
 - Funktionswert f=1, falls mehr als eine Variable gleich Eins ist => zwei oder mehr Glühlampen sind defekt

g_4	g_3	g_2	g_1	f
0	0	0	0	0
0	0	0	1	-
0	0	1	0	
0	0	1	1	$\left(\begin{array}{c}1\end{array}\right)$
0	1	0	0	-
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	-
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Aufgabe - 2.1

Veranschaulichung mittels Symmetriediagramm:



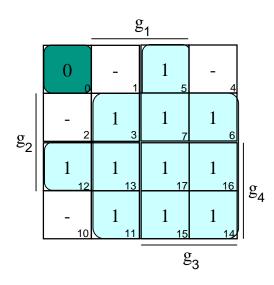
g ₄	g_3	g_2	g_{1}	f
0	0	0	0	0
0	0	0	1	-
0	0	1	0	
0	0	1	1	1
0	1	0	0)
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	-
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Aufgabe 2.2

2.2 Geben Sie die Einsstellenmenge $\{X_j\}_1$ und die Nullstellenmenge $\{X_j\}_0$ an.

$$\{X_j\}_1 = \{3,5,6,7,11,12,13,14,15,16,17\}$$

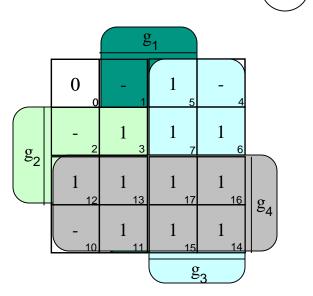
$$\{X_i\}_0 = \{0\}$$



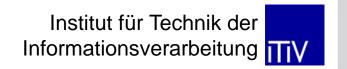
2. Aufgabe - 2.3

2.3 Stellen Sie f als DNF oder als KNF dar. Was passiert nun beim Ausfall genau einer Glühlampe?

KNF:
$$f = g_1 \lor g_2 \lor g_3 \lor g_4$$



- Der Hausmeister wird auch alarmiert, wenn nur eine Glühlampe ausfällt.
- f ist die Einsvervollständigung der ursprünglichen Funktion.



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

3. Aufgabe: Min- und Maxterme

WWW.kit.edu

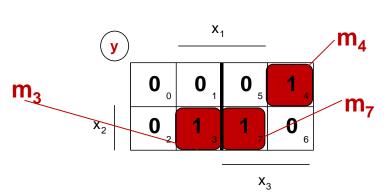
3. Aufgabe

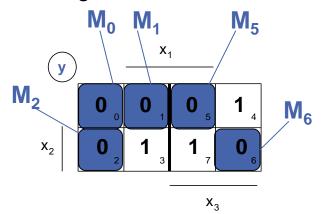
- Gegeben sei die Funktion f(x₄, x₃, x₂, x₁) durch die Angabe ihrer Minterme:
- $f = m_0 \ v \ m_1 \ v \ m_3 \ v \ m_7 \ v \ m_{16} \ v \ m_{17}$

 3.1
 Geben Sie f in der im Buch auf S. 118 gezeigten Form mit oktalen Indizes an (y_{xvz...}).

Minterm und Maxterm

 Jede Schaltfunktion lässt sich durch Disjunktion ihrer Minterme (DNF) oder durch Konjunktion ihrer Maxterme (KNF) eindeutig beschreiben





Minterme m_i projizieren Einsstellen auf eine beliebige Stelle im S-Diagramm

$$m_3 = \overline{x_3} \& x_2 \& x_1$$

 $m_4 = x_3 \& \overline{x_2} \& \overline{x_1}$
 $m_7 = x_3 \& x_2 \& x_1$

$$M_0 = x_3 \lor x_2 \lor x_1$$

$$M_1 = x_3 \lor x_2 \lor x_1$$

$$M_2 = x_3 \lor x_2 \lor x_1$$

$$M_5 = \overline{x_3} \lor x_2 \lor \overline{x_1}$$

$$M_6 = \overline{x_3} \lor \overline{x_2} \lor x_1$$

$$(m_3 \lor m_4 \lor m_7) \equiv \mathcal{Y} \equiv (M_0 \& M_1 \& M_2 \& M_5 \& M_6)$$

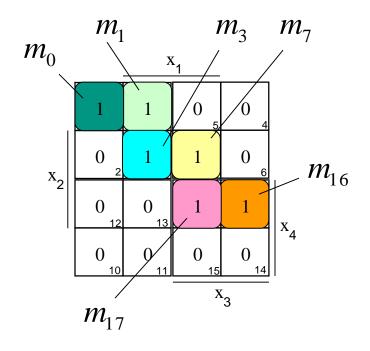
3. Aufgabe – 3.1

Karlsruhe Institute of Technology	

j ₀	x ₄	х ₃	х ₂	х ₁	f		
0	0	0	0	0	1		
1	0	0	0	1	1	3	
2	0	0	1	0	0		
3	0	0	1	1	1		_
4	0	1	0	0	0	1	
5	0	1	0	1	0		
6	0	1	1	0	0		_ ≡:
7	0	1	1	1	1	2	Oktalwerte ablesen
10	1	0	0	0	0		able
11	1	0	0	1	0		erte
12	1	0	1	0	0	0	talw
13	1	0	1	1	0		Š
14	1	1	0	0	0		
15	1	1	0	1	0	4	
16	1	1	1	0	1		_
17	1	1	1	1	1		

$$f = \boxed{m_0} \lor \boxed{m_1} \lor \boxed{m_3} \lor \boxed{m_7} \lor \boxed{m_{16}} \lor \boxed{m_{17}}$$

$$f(x_4, x_3, x_2, x_1) = y_{140213}$$



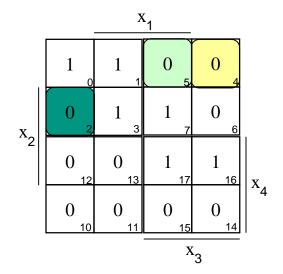
3. Aufgabe – 3.3

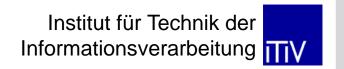
 Geben Sie die drei Maxterme mit den kleinsten Indizes an, für die f_i = 0 gilt

$$M_2 = x_4 \vee x_3 \vee \overline{x_2} \vee x_1$$

$$M_4 = x_4 \vee \overline{x_3} \vee x_2 \vee x_1$$

$$M_5 = x_4 \vee \overline{x_3} \vee x_2 \vee \overline{x_1}$$





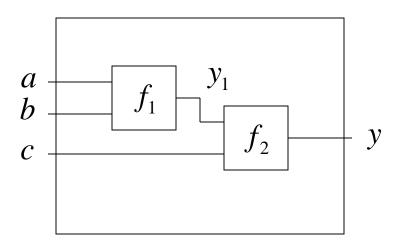
Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

4. Aufgabe

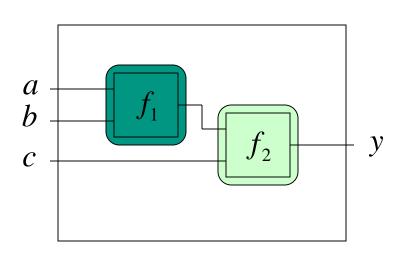
- Eine Schaltfunktion besteht, wie im nachfolgenden Bild dargestellt, aus den Teilfunktionen $y_1 = f_1(a, b)$ und $y = y_2 = f_2(c, y_1)$.
- Dafür ist die folgende Funktionstabelle bekannt:



a	b	y ₁	c	у
0	0	0	0	1
0	1	1	0	0
1	0	1	1	1
1	1	0	1	0

4. Aufgabe – 4.1

Ist die Funktion vollständig spezifiziert?



$$y_1 = a \not\equiv b = a \text{ xor } b = a\overline{b} \vee \overline{ab}$$
$$y = y_1 \equiv c = y_1 c \vee \overline{y_1} c$$

a	b	y 1	c	у
0	0	0	0	1
0	1	1	0	0
1	0	1	1	1
1	1	0	1	$\left \begin{array}{c} 0 \end{array} \right $

4. Aufgabe – 4.2

Stellen Sie die Funktionstabelle für die Funktion y = f(a,b,c) auf.

a	b	y 1	c	у
0	0	0	0	1
0	1	1	0	0
1	0	1	1	1
1	1	0	1	0

a	b	c	y ₁	y
$\begin{bmatrix} 0 \end{bmatrix}$	0	0	0	1
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	0



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

5. Aufgabe

Stellen Sie folgenden Ausdruck in allen in der Vorlesung aufgeführten Basissystemen dar:

$$y = (a \& \bar{b}) \lor \bar{a}$$

Basissysteme

- 3 Operatoren
 - NICHT, UND, ODER
- 2 Operatoren
 - NICHT, UND
 - NICHT, ODER
 - UND, ANTIVALENZ
- 1 Operator
 - NAND
 - NOR
- Darstellung in 6 Basissystemen

Beziehungen der Schaltalgebra

Regeln für ein Element

Regeln für zwei oder mehr Elemente

R10a
$$a \ v \ (b \ v \ c) = (a \ v \ b) \ v \ c = a \ v \ b \ v \ c$$
 R10b $a \ \& \ (b \ \& \ c) = (a \ \& \ b) \ \& \ c = a \ \& \ b \ \& \ c$ (assoziative Gesetze)

R11a
$$a v (a \& b) = a$$
 R11b $a \& (a v b) = a$ (Absorptionsgesetze)

R12a
$$(a \lor b)$$
 = $a \& b$ R12b $(a \& b)$ = $a \lor b$

(De Morgansche Regeln)

5. Aufgabe – 5.1

NICHT, UND, ODER __

$$y = (a \& b) \lor a = (a \lor a) \& (\overline{b} \lor a)$$

$$= 1 \& (\overline{b} \lor a) = \overline{b} \lor a$$
DeMorgan

NICHT, UND

$$y = \overline{b} \vee \overline{a} = \overline{\overline{b}} = \overline{\overline{a}} = \overline{\overline{b}} = \overline{\overline{b}}$$

NICHT, ODER

$$y = \overline{b} \vee \overline{a}$$

5. Aufgabe

UND, ANTIVALENZ

$$y = \overline{b \& a} = (b \& a) \not\equiv 1$$

$$\overline{a} = a \not\equiv 1$$

$$y = \overline{b \& a} = a \overline{\&} b$$

$$mit \ a \lor a = a$$

$$a \lor a = a$$

$$y = \overline{b} \lor \overline{a} = \overline{\overline{b}} \lor \overline{a} = \overline{\overline{b}} \lor \overline{a} = \overline{(\overline{b} \lor \overline{a})} \lor (\overline{b} \lor \overline{a})$$

(R7a)

$$= [(a \lor a) \lor (b \lor b)] \lor [(a \lor a) \lor (b \lor b)] \leftarrow$$

