

Felix Pistorius

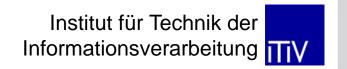
pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Übung - Digitaltechnik

7. Übung

www.kit.edu



Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Entwicklungssatz der Schaltalgebra

- Bezeichnet eine formale Methode, die es erlaubt, eine Funktion $f(x_n,...,x_3, x_2, x_1)$ in eine DNF (oder KNF) umzuwandeln
- Die Entwicklung der Funktion f nach der Variablen x_i
 - \rightarrow Aufteilung in zwei Fälle: $x_i = 1$ und $x_i = 0$

$$f(x_{n},...,x_{i},...,x_{1}) = [x_{i} & f(x_{n},...,1,...,x_{1})] \vee [\overline{x_{i}} & f(x_{n},...,0,...,x_{1})]$$

$$= [x_{i} & f \Big|_{x_{i}=1}] \qquad \qquad \vee [\overline{x_{i}} & f \Big|_{x_{i}=0}]$$

Die nach x_i entwickelten Funktionen $f\Big|_{x_i=1}$ und $f\Big|_{x_i=0}$ werden als Restfunktionen oder Kofaktoren bezeichnet

Entwicklungssatz der Schaltalgebra

Bei der Auswertung des Entwicklungssatzes für n Variablen: n Klammerebenen im Funktionsterm:

$$F(d,c,b,a) = b[c(1) \vee \overline{c}(\overline{a})] \vee \overline{b}[c(d(1) \vee \overline{d}(\overline{a})) \vee \overline{c}(d(a) \vee \overline{d}(0))]...$$

- Methode zur erleichterten Übersicht: Rechnen mit Restfunktionen (für Multiplexer-Realisierung hilfreich):
- **Beispiel**: $y = f(x_1, x_2, x_3,)$
- Entwicklung nach x₁:

$$f(1,x_2, x_3, ...) = ?,$$
 $f(0,x_2,x_3,...) = ?$

Entwicklung nach x₂:

$$f(1,1, x_3, ...) = ?,$$
 $f(0,1, x_3, ...) = ?,$ $f(1,0, x_3, ...) = ?,$ $f(0,0, x_3, ...) = ?$

- **Entwicklung nach** x_3 : (...), usw.
- Weitere Auffächerung der Restfunktionen wird abgebrochen, sobald konstant wertig

 Die gegebene Schaltfunktion y = f(d, c, b, a) soll mit 2:1 Multiplexern realisiert werden. Dazu muss die Funktion nach jeder Variablen mit Hilfe des Entwicklungssatzes entwickelt werden.

$$y = \overline{ac} + b + \overline{dc} + adc$$

 1.1 Entwickeln Sie die Schaltfunktion nach der Variable b. Geben Sie alle Zwischenschritte an.

$$y = f(d,c,b,a) = \overline{ac} + b + \overline{dc} + adc$$

$$f_b(d,c,1,a) = \overline{ac} + 1 + \overline{dc} + adc$$

$$= 1$$

$$f_{\bar{b}}(d,c,0,a) = \overline{ac} + 0 + \overline{dc} + adc$$

$$= \overline{ac} + \overline{dc} + adc$$

 1.1 Entwickeln Sie die Schaltfunktion nach der Variable b. Geben Sie alle Zwischenschritte an.

Teilrealisierung mit 2:1 Multiplexern:

$$f_{\bar{b}}(d,c,0,a) = \overline{ac} + \overline{dc} + adc$$

$$f_b(d,c,1,a) = 1$$



1.2 Entwickeln Sie die Restfunktionen zuerst nach der Variablen c und dann, falls erforderlich, nach den verbleibenden Variablen, so dass als Restfunktionen nur och Konstanten übrig bleiben.

$$f_b(d,c,1,a) = 1 \rightarrow \text{konstante Funktion, Betrachtung nicht erforderlich!!!}$$

$$f_{\bar{b}}(d,c,0,a) = ac + dc + adc \rightarrow \text{Entwicklung nach c !!!}$$

$$f_{\overline{b}}(d,c,0,a) = \overline{ac} + \overline{dc} + adc$$

Entwicklung nach c:

$$f_{\overline{bc}}(d,0,0,a) = a \cdot 0 + d \cdot 0 + ad \cdot 0$$

$$= \overline{a} \cdot 1 + \overline{d} \cdot 1$$

$$= \overline{a} + \overline{d}$$

$$f_{\overline{bc}}(d,1,0,a) = \overline{a} \cdot \overline{1} + \overline{d} \cdot \overline{1} + ad \cdot 1$$

$$= \overline{a} \cdot 0 + \overline{d} \cdot 0 + ad$$

$$= ad$$

Weitere Entwicklung beider Funktionen nach derforderlich !!!

Zunächst die Restfunktion
$$f_{\bar{b}\bar{c}}(d,0,0,a) = \bar{a} + \bar{d}$$

Entwicklung nach d:
$$f_{\bar{b}\bar{c}\bar{d}}(0,0,0,a) = a+0 = \bar{a}+1=1$$

$$f_{\bar{b}\bar{c}\bar{d}}(1,0,0,a) = \bar{a}+\bar{1}=\bar{a}+0=\bar{a}$$

Nun die Restfunktion
$$f_{\bar{h}c}(d,1,0,a) = ad$$

Entwicklung nach d:
$$f_{\bar{b}c\bar{d}}(0,1,0,a)=a\cdot 0=0$$

$$f_{\bar{b}c\bar{d}}(1,1,0,a)=a\cdot 1=a$$

Weitere Entwicklung nach a erforderlich !!!

Entwicklung nach a:

$$f_{\bar{b}cd}(1,1,0,a) = a$$
 $f_{\bar{b}cd\bar{a}}(1,1,0,0) = 0$ $f_{\bar{b}cd\bar{a}}(1,1,0,1) = 1$

$$f_{\bar{b}cd}(1,0,0,a) = \bar{a}$$
 $f_{\bar{b}cda}(1,0,0,0) = 1$ $f_{\bar{b}cda}(1,1,0,1) = 0$

Die Funktion y lautet nun:

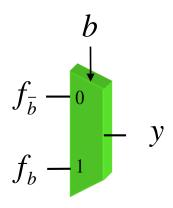
$$y = f(d, c, b, a) = \overline{b} \cdot (\overline{c} \cdot (\overline{d} \cdot f_{\overline{bcd}} + d \cdot (\overline{a} \cdot f_{\overline{bcda}} + a \cdot f_{\overline{bcda}})) +$$

$$c \cdot (\overline{d} \cdot f_{\overline{bcd}} + d \cdot (\overline{a} \cdot f_{\overline{bcda}} + a \cdot f_{\overline{bcda}}))) + b \cdot f_b$$

$$= \overline{b} \cdot (\overline{c} \cdot (\overline{d} \cdot 1 + d \cdot (\overline{a} \cdot 1 + a \cdot 0)) + c \cdot (\overline{d} \cdot 0 + d \cdot (\overline{a} \cdot 0 + a \cdot 1))) + b \cdot 1$$

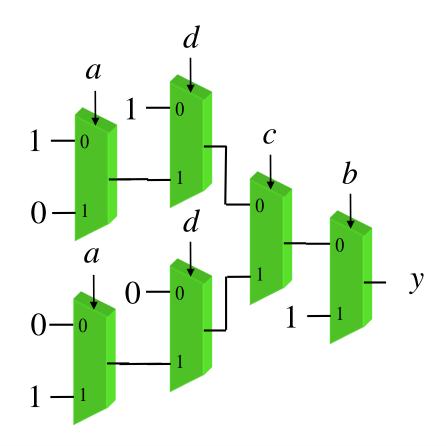
Multiplexerrealisierung durch Heranziehen aller entwickelten Teilfunktionen

$$y = \overline{b} \cdot (\overline{c} \cdot (\overline{d} \cdot 1 + d \cdot (\overline{a} \cdot 1 + a \cdot 0)) + c \cdot (\overline{d} \cdot 0 + d \cdot (\overline{a} \cdot 0 + a \cdot 1))) + b \cdot 1$$



Multiplexerrealisierung durch Heranziehen aller entwickelten Teilfunktionen

$$y = \overline{b} \cdot (\overline{c} \cdot (\overline{d} \cdot 1 + d \cdot (\overline{a} \cdot 1 + a \cdot 0)) + c \cdot (\overline{d} \cdot 0 + d \cdot (\overline{a} \cdot 0 + a \cdot 1))) + b \cdot 1$$



Alternative Realisierung mittels 8:1Multiplexer

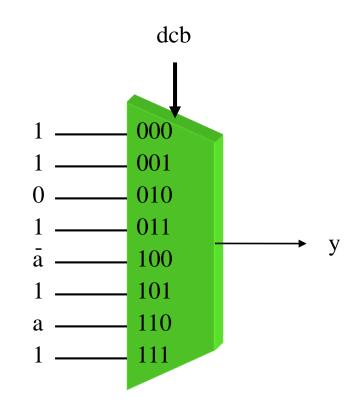
$$f_{b}(d,c,1,a) = 1$$

$$f_{\bar{b}c\bar{d}}(0,1,0,a) = 0$$

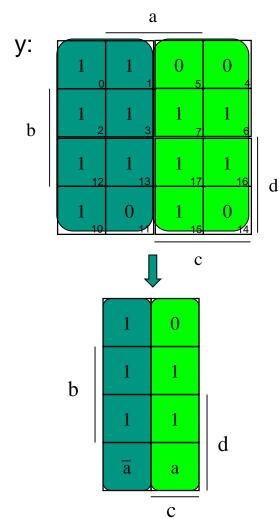
$$f_{\bar{b}c\bar{d}}(1,1,0,a) = a$$

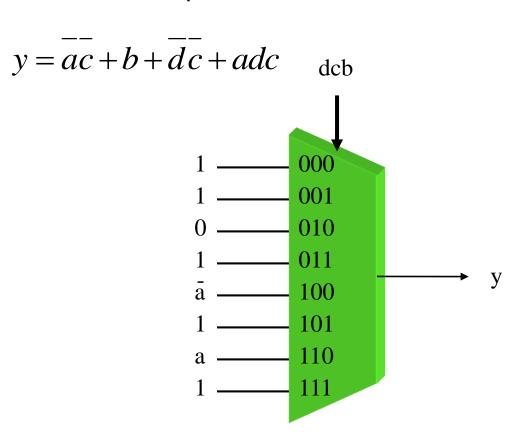
$$f_{\bar{b}c\bar{d}}(0,0,0,a) = 1$$

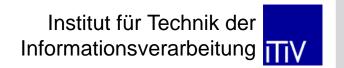
$$f_{\bar{b}c\bar{d}}(1,0,0,a) = \bar{a}$$



Alternative Realisierung mittels 8:1Multiplexer







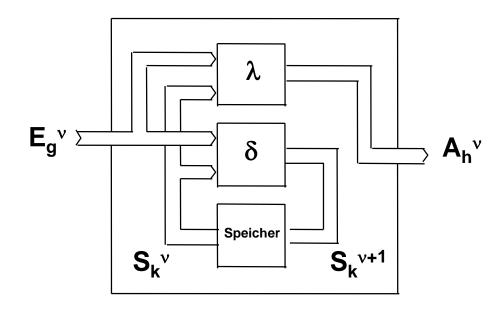
Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Automaten- Allgemein

Darstellung des Automaten durch folgende Struktur:



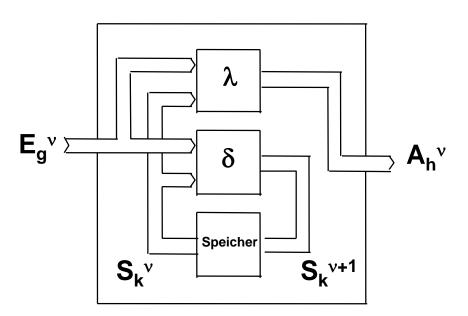
- rekursive Anordnung für die Bestimmung des neuen Zustandes
- der Speicher nimmt den momentanen Zustand S_k^v auf
- der neue Zustand S_k^{v+1} muss zum richtigen Zeitpunkt übernommen werden

Automaten - Typen

Wichtige Typklassen von Automaten im Zusammenhang mit Digitalschaltungen:

- endliche, diskrete und deterministische Automaten
- Bezüglich der Ausgabefunktion unterscheidet man drei Fälle
- Mealy-Automat: mit $A_h^v = \lambda (E_q^v, S_k^v)$ als allgemeinster Fall:
 - A_h^v: Ausgansvektor
 - \bullet S_k^v: Zustandsvektor
 - E_q^v: Eingangsvektor
 - \bullet λ : Ausgabefunktion
 - \bullet δ : Transitionsfunktion

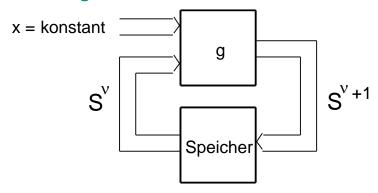
$$s_i^{v+1} = \delta_i \left(S_k^v, E_g^v \right), mit \ s_i^{v+1} \in S_k^{v+1}$$



Schaltwerke

Weiterhin: formal eingeführte Indizierung v der zeitlichen Ordnung muss nun in technische Realisierung überführt werden

→ Rückführung der Zustände über einen Speicher:



Schaltwerke, bei denen Rückführungen direkt wirksam werden, heißen asynchron → sie sind schwieriger zu entwerfen

Also: ein Speicher wird benötigt, der die Schwierigkeit der unmittelbar wirksamen Rückkopplung vermeidet, indem nur zu bestimmten Zeitpunkten die am Speicher anliegenden Werte übernommen werden

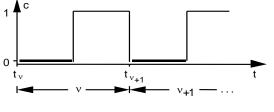
Schaltwerke

Mealy-Automat: Änderung der Eingabe bewirkt asynchrone Ausgabenberechnung

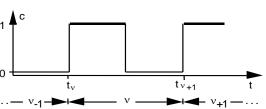
→ die Zählung des Indexes v muss aus dem Taktsignal abgeleitet werden

Steuerungsarten des Taktes:

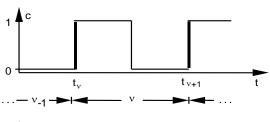
pegelgesteuert:

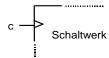


pegelgesteuert:

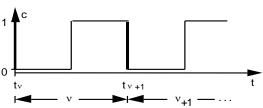


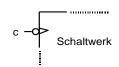
flankengesteuert:





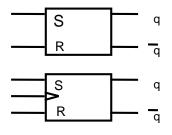
flankengesteuert:



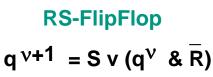


Binärspeicher (FlipFlops)

Symbole



Charakteristische Gleichungen



$$a^{\nu+1} = D$$

T-FlipFlop

$$q^{v+1} = (T \& q^{v}) v (T \& q^{v})$$

	¬
—	q
— К	_

JK-FlipFlop

$$q^{v+1} = (K \& q^v) \lor (J \& \overline{q}^v)$$

Ansteuerfunktionen

qν	q ν +1	R	S
0	0	-	0
0	1	0	1
1	0	1	0
1	1	0	-

qν	q^{v+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

q ^v	q^{v+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

qν	q^{v+1}	K	J
0	0	-	0
0	1	-	1
1	0	1	-
1	1	0	_

2. Aufgabe

 Gegeben ist die codierte Ablauftafel eines Automaten. Bestimmen Sie die Ansteuerfunktionen für eine Realisierung des Automaten mit JK-Flipflops.

(Q^n)	X	<	n+1	Flip	flop2	Flip	flop1
q_2^n	q_1^n	b	a	q_2^{n+1}	q_1^{n+1}	\mathbf{J}_2	\mathbf{K}_2	\mathbf{J}_{1}	\mathbf{K}_{1}
0	0	0	0	0	1				
0	$\mid 0 \mid$	0	1	0	1				
0	0	1	-	1	1				
0	1	-	0	1	0				
0	1	-	1	0	1				
1	0	-	0	0	0				
1	0	0	1	1	1				
1	0	1	1	1	0				
1	1	-	-	0	0				

2. Aufgabe

 Gegeben ist die codierte Ablauftafel eines Automaten. Bestimmen Sie die Ansteuerfunktionen für eine Realisierung des Automaten mit JK-Flipflops.

	2^n	2	X	Q	n+1	Flip	flop	Flip	flop 1
q_2^n	$q_1^{\ n}$	b	a	q_{2}^{n+1}	q_1^{n+1}	\mathbf{J}_2	K_2	\mathbf{J}_1	\mathbf{K}_{1}
0	0	0	0	0	1	0	-	1	_
0	0	0	1	0	1	0	_	1	-
0	0	1	-	1	1	1	-	1	-
0	1	-	0	1	0	1	-	_	1
0	1	_	1	0	1	0	-	_	0
1	0	-	0	0	0	_	1	0	-
1	0	0	1	1	1	_	0	1	_
1	0	1	1	1	0	-	0	0	-
1	1	_	-	0	0	-	1	-	1

Ansteuerfunktion eines JK-Flipflops:

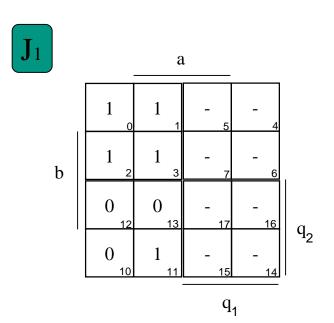
q^n	q^{n+1}	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	ı	0

2.1 Können Sie anhand der Tabelle den Automatentyp angeben (mit Begründung)?

Nein, da die Unterscheidung der Automaten anhand der Ausgabefunktionen erfolgt !!!

(Q^n) >	X	Q	n+1	Flip	flop2	Flip	flop 1
q_2^n	q_1^n	b	a	q_2^{n+1}	q_1^{n+1}	J_2	K_2	\mathbf{J}_{1}	\mathbf{K}_{1}
0	0	0	0	0	1	0	-	1	_
0	0	0	1	0	1	0	_	1	-
0	0	1	ı	1	1	1	-	1	-
0	1	_	0	1	0	1	ı	_	1
0	1	-	1	0	1	0	-	_	0
1	0	-	0	0	0	_	1	0	-
1	0	0	1	1	1	_	0	1	_
1	0	1	1	1	0	_	0	0	_
1	1	_	_	0	0	-	1	_	1

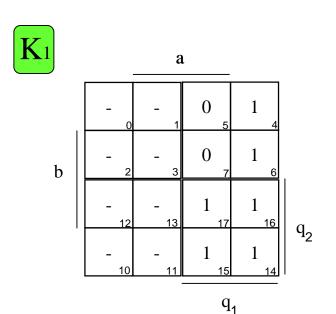
 2.2 Tragen Sie die Ansteuerfunktionen J1, K1, J2, K2 in Symmetriediagramme ein und bestimmen Sie die disjunktiven Minimalformen.



	Q^n	7	X	Q	n+1	F	F2	F	F1
q_2^n	q_1^{n}	b	a	q_2^{n+1}	$q_{_{_{1}}}^{^{n+1}}$	\mathbf{J}_2	\mathbf{K}_{2}	J_1	K ₁
0	0	0	0	0	1	0	-	1	-
0	0	0	1	0	1	0	-	1	-
0	0	1	-	1	1	1	1	1	-
0	1	-	0	1	0	1	1	1	1
0	1	-	1	0	1	0	1	-	0
1	0	-	0	0	0	-	1	0	-
1	0	0	1	1	1	-	0	1	-
1	0	1	1	1	0	-	0	0	-
1	1	-	[- <i>]</i>	0	0	-	1	-	1

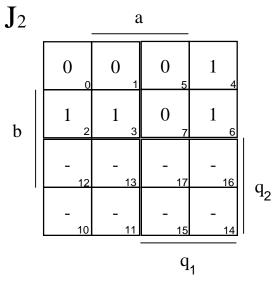
$$J_1 = \overline{q_2} + a\overline{b}$$

 2.2 Tragen Sie die Ansteuerfunktionen J1, K1, J2, K2 in Symmetriediagramme ein und bestimmen Sie die disjunktiven Minimalformen.



(Q^n	<u> </u>	X	Q	n+1	F	F2	F	F1_
q_2^{n}	q_1^{n}	b	a	q_2^{n+1}	$q_{_{_{1}}}^{^{n+1}}$	J_2	\mathbf{K}_{2}	\mathbf{J}_{1}	\mathbf{K}_{1}
0	0	0	0	0	1	0	-	1	1
0	0	0	1	0	1	0	ı	1	ı
0	0	1	ı	1	1	1	1	1	1
0	1	-	0	1	0	1	1	-	1
0	1	-	1	0	1	0	1	-	0
1	0	-	0	0	0	-	1	0	-
1	0	0	1	1	1	-	0	1	-
1	0	1	1	1	0	-	0	0	-
1	1	-	-	0	0	-	1	-	1

$$K_1 = q_2 + \overline{a}$$



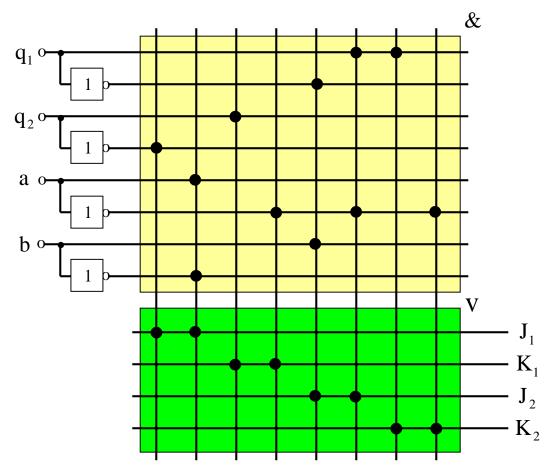
			_	ı	
\mathbf{K}_2	,	2	l		
	- 0	- 1	- 5	- 4	
b	- 2	- 3	- 7	- 6	
	1	0	1	1	
·	1	0	1	1	q ₂
			q		

Q^n		X		Q^{n+1}		FF2		FF1	
q_2^n	q_1^{n}	b	a	q_{2}^{n+1}	$q_{_{1}}^{n+1}$	\mathbf{J}_2	\mathbf{K}_2	J_1	K ₁
0	0	0	0	0	1	0	ı	1	_
0	0	0	1	0	1	0	ı	1	
0	0	1	ı	1	1	1	ı	1	-
0	1	_	0	1	0	1	1	-	1
0	1	-	1	0	1	0	-	-	0
1	0	-	0	0	0	-	1	0	-
1	0	0	1	1	1	-	0	1	-
1	0	1	1	1	0	-	0	0	-
1	1	-	-	0	0	-	1	-	1

$$J_2 = \overline{q_1}b + \overline{q_1}a$$

$$K_2 = q_1 + \overline{a}$$

 2.3 Realisieren Sie die Ansteuerfunktionen unter Verwendung eines PLA-Bausteins und zeichnen Sie den vollständigen Automaten.

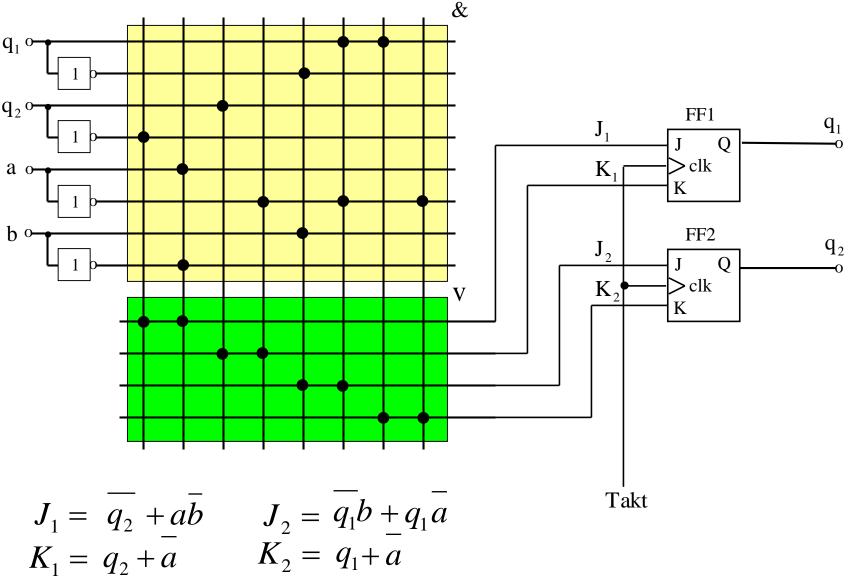


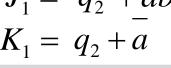
$$J_{1} = \overline{q_{2}} + a\overline{b}$$

$$K_{1} = \underline{q_{2}} + \overline{a}$$

$$J_{2} = \overline{q_{1}}b + \overline{q_{1}}a$$

$$K_{2} = q_{1} + \overline{a}$$





$$J_2 = q_1 b + q_1 a$$

$$K_2 = q_1 + a$$

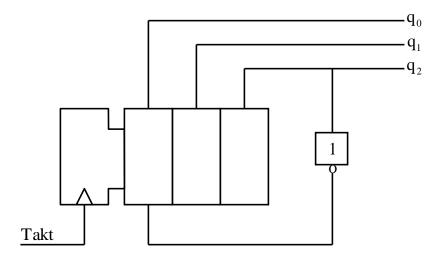
Felix Pistorius

pistorius@kit.edu

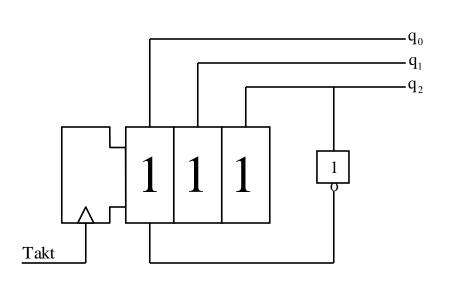
Karlsruher Institut für Technologie (KIT)

3. Aufgabe

Im unteren Bild ist ein rückgekoppeltes Schieberegister dargestellt.

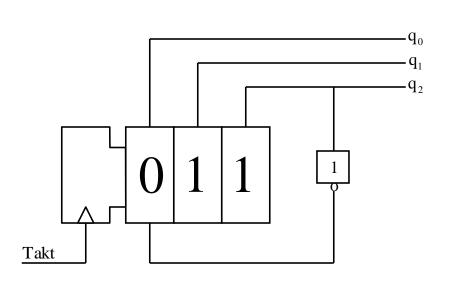


 3.1 Bestimmen Sie den Zählzyklus, wenn das Schieberegister am Anfang mit 111 (q₂, q₁, q₀) belegt ist.



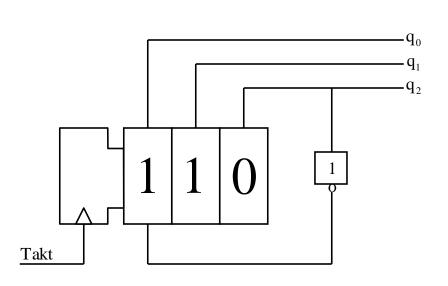
Takt	Belegung (q ₂ ,q ₁ ,q ₀)
0	111
1	
2	
3	
4	
5	
6	

 3.1 Bestimmen Sie den Zählzyklus, wenn das Schieberegister am Anfang mit 111 (q₂, q₁, q₀) belegt ist.



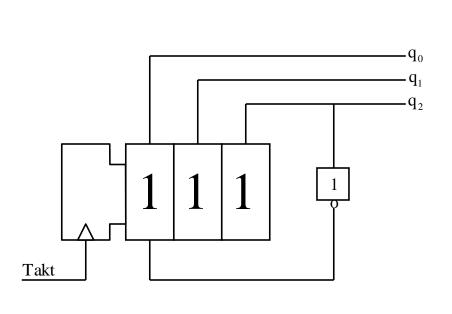
Takt	Belegung (q ₂ ,q ₁ ,q ₀)
0	111
1	110
2	
3	
4	
5	
6	

 3.1 Bestimmen Sie den Zählzyklus, wenn das Schieberegister am Anfang mit 111 (q₂, q₁, q₀) belegt ist.



Takt	Belegung (q ₂ ,q ₁ ,q ₀)
0	111
1	110
2	100
3	000
4	001
5	011
6	

 3.1 Bestimmen Sie den Zählzyklus, wenn das Schieberegister am Anfang mit 111 (q₂, q₁, q₀) belegt ist.



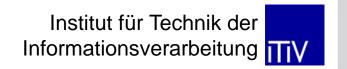
			ì
	Takt	Belegung (q ₂ ,q ₁ ,q ₀)	
	0	111	•
	1	110	
	2	100	
	3	000	
	4	001	
	5	011	
	6	111	
	5	011	

→ ist ein zyklischer Vorgang !!!

3.2 Welche Belegungen werden bei diesem Zähler nicht erreicht?

Takt	Belegung (q ₂ ,q ₁ ,q ₀)
0	111
1	110
2	100
3	000
4	001
5	011

- Von 8 möglichen Belegungen, werden lediglich 6 Belegungen erreicht.
- es fehlen also 2 Belegungen →

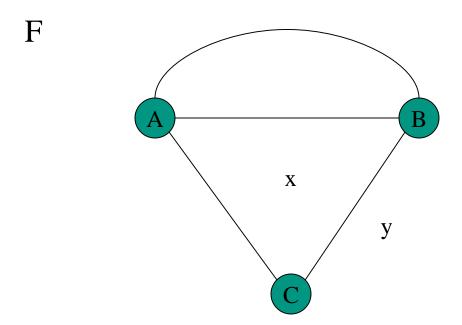


Felix Pistorius

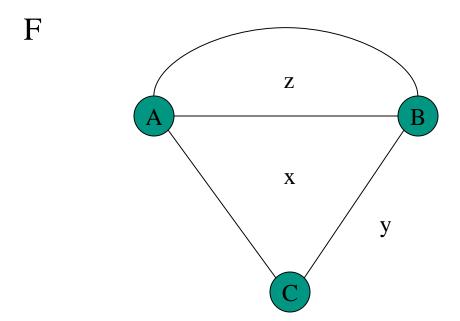
pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

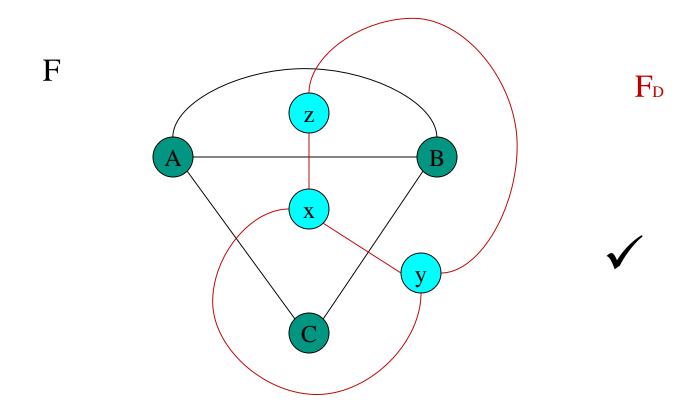
 5.1 Zeichnen Sie ein Beispiel für einen ungerichteten Graphen F mit 3 Knoten, der folgende Eigenschaften hat: Der Graph F ist isomorph zu seinem dualen Graphen FD



 5.1 Zeichnen Sie ein Beispiel für einen ungerichteten Graphen F mit 3 Knoten, der folgende Eigenschaften hat: Der Graph F ist isomorph zu seinem dualen Graphen FD



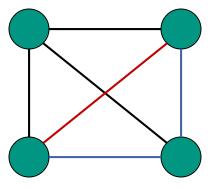
 5.1 Zeichnen Sie ein Beispiel für einen ungerichteten Graphen F mit 3 Knoten, der folgende Eigenschaften hat: Der Graph F ist isomorph zu seinem dualen Graphen FD



 5.1 Vorgegeben seien die folgenden Eigenschaften eines Graphen: er ist ungerichtet, vollständig, einfach, hat 7 Knoten und keine Schleifen. Berechnen Sie die Anzahl der Kanten

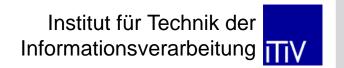
bei 4 Knoten:

$$3 + 2 + 1 = 6$$



bei 7 Knoten:

$$6+5+4+3+2+1 = 21!!!$$



Felix Pistorius

pistorius@kit.edu

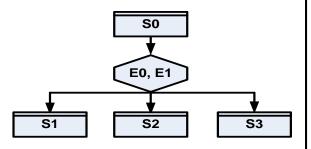
Karlsruher Institut für Technologie (KIT)

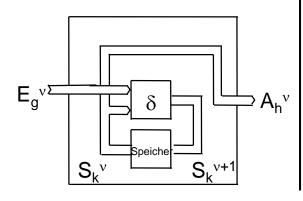
Automaten-Typen

Medwedew-Automat

$$A_h^{v} = S_k^{v}$$

Die Ausgabe des Automaten ist identisch mit dem aktuellen Zustand

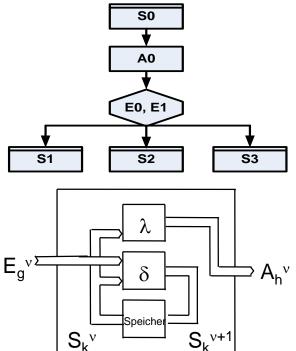




Moore-Automat

$$A_h^{v} = \lambda (S_k^{v})$$

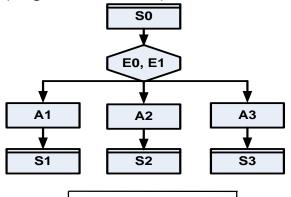
Die Ausgabe des Automaten ergibt sich ausschließlich aus dem aktuellen Zustand

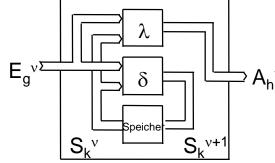


Mealy-Automat

$$A_h^{\nu} = \lambda (E_g^{\nu}, S_k^{\nu})$$

Die Ausgabe des Automaten ergibt sich aus **aktuellem Zustand** und einer **Eingabe** (allgemeiner Fall)





- Für einen Vergnügungspark sollen Sie einen sprechenden Papageien entwerfen. Der Papagei versucht, dem Kunden Wundereier zum Preis von je 1€ aufzuschwatzen. Dies erfolgt mittels eines Endlos-Tonbandes, das jeweils nur im Grundzustand laufen soll. Der Kunde signalisiert seine Kaufbereitschaft durch Betätigen einer "Ja"-Taste. Dadurch öffnet sich erst der Geldeinwurf. Es können Münzen zu 0,50 € und 1 € eingeworfen werden. Andere Münzen oder Überzahlungen werden einbehalten. Ist mindestens 1 € bezahlt, öffnet sich der Warenschacht, das Ei wird ausgeworfen und der Geldeinwurf geschlossen. Anschließend erfolgt automatisch die Rückkehr in den Grundzustand. Ein Betätigen der "Ja"-Taste führt stets, gegebenenfalls unter Verlust bereits gezahlter Beträge, in den Zustand "Geldeinwurf".
- Entwerfen Sie den Automatengraphen für eine Realisierung als Moore-Automat.

Eingangsvariablen:

- JA 1: "JA"-Taste gedrückt
 - 0: "JA"-Taste nicht gedrückt
- M1 1: es wurde ein 50Ct-Stück eingeworfen
 - 0: es wurde kein 50Ct-Stück eingeworfen
- M2 1: es wurde ein 1 €-Stück eingeworfen
 - 0: es wurde kein 1 €-Stück eingeworfen

Ausgangsvariablen:

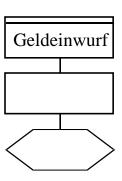
- E 1: es wird ein Ei ausgegeben
 - 0: es wird kein Ei ausgegeben
- B 1: das Tonband läuft
 - 0: das Tonband läuft nicht
- G 1: der Geldeinwurf ist geöffnet
 - 0: der Geldeinwurf ist geschlossen

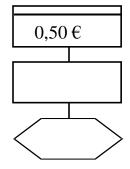
Zustandsnamen:

- "Grundzustand", "Geldeinwurf", "0.50 Ct", "1 €"
- Verwenden Sie für weitere Zustände erklärende Namen

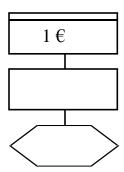
Karlsruhe Institute of Technology

- Zustandsnamen:
 - "Grundzustand"
 - "Geldeinwurf"
 - "0.50 Ct"
 - "1 €"

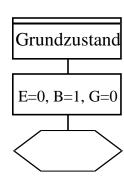


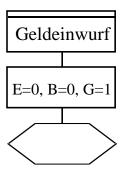


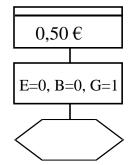
- Moore-Automat
- 4 Zustände



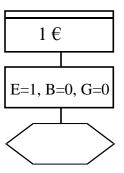
- Ausgangsvariablen:
- E 1: ein Ei ausgegeben
- E 0: kein Ei ausgegeben
- B 1: Tonband läuft
- B 0: Tonband läuft nicht
- G1: Geldeinwurf ist geöffnet
- G 0: Geldeinwurf ist geschlossen





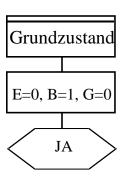


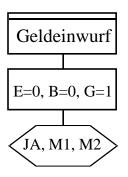
- Moore-Automat
- 4 Zustände
- Ausgaben festlegen

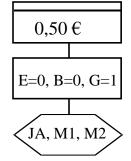


Karlsruhe Institute of Technology

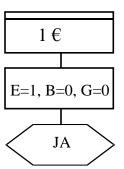
- Eingangsvariablen:
- Ja 1/0: "JA"-Taste gedrückt
- M1 1/0: 50Ct eingeworfen
- M2 1/0:1€ eingeworfen



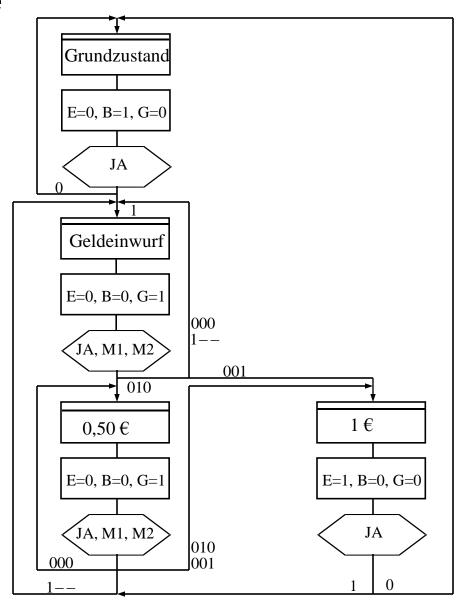




- Moore-Automat
- 4 Zustände
- Ausgaben festlegen
- Festlegen der relevanten Abfragen



 Übergänge + Bedingungen einzeichnen

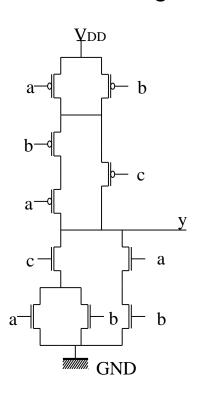


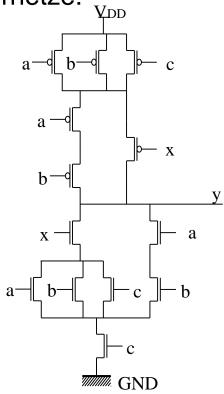
Felix Pistorius

pistorius@kit.edu

Karlsruher Institut für Technologie (KIT)

Gegeben seien die folgenden CMOS-Gatternetze:





Bestimmen Sie die logischen Funktionen der p- und n-Netze.
 Überprüfen Sie, ob die logischen Funktionen wohldefiniert sind. Geben Sie alle Eingangskombinationen für eventuelles Fehlverhalten an.

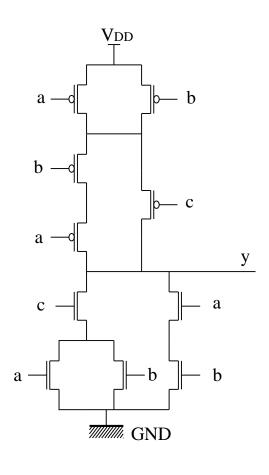
- P-Netz (v₁) stellt Verbindung zu V_{DD} her
- N-Netz (v₀) stellt Verbindung zu GND her
- Forderungen an fehlerfreies und wohldefiniertes Verhalten:
 - 1. $v_0 \cdot v_1 = 0$ (kein Kurzschluss)
 - 2. $v_0 + v_1 = 1$ (Vollständigkeit)

oder auch wenn Dualität gilt:

$$v_0 = \overline{v_1}$$
 (wohl definiert)

- Bedeutung im Symmetriediagramm:
 - Keine Überlappung von Einsen und Nullen (1)
 - Alle Felder im S-Diagramm sind belegt (2) (kein undefiniertes Verhalten)

Teil 1



P-Netz:

$$v_1 = (\overline{a} + \overline{b}) \cdot (\overline{ab} + \overline{c})$$

N-Netz:

$$v_0 = (ab) + (c \cdot (a+b))$$

Forderung:

$$v_0 = \overline{v_1}$$

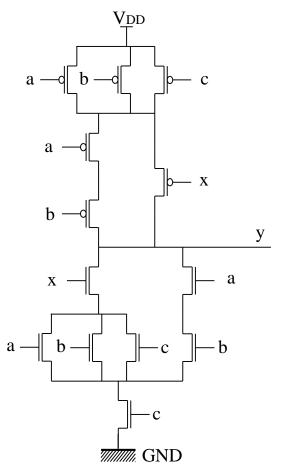
$$\overline{v_1} = \overline{(a+\overline{b}) \cdot (c+\overline{ab})}$$

$$= (ab) + \overline{(c+\overline{ab})}$$

$$= (ab) + (c \cdot (a+b)) = v_0$$

erfüllt, daher ist die Funktion ist wohldefiniert!!!

Teil 2



P-Netz:

$$v_1 = (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{x} + \overline{ab})$$

N-Netz:

$$v_0 = c \cdot (x \cdot (a+b+c) + ab)$$

Forderung:

$$v_{0} \cdot v_{1} = 0$$

$$((a + b + c) \cdot (x + ab)) \cdot c \cdot (x \cdot (a + b + c) + ab)$$

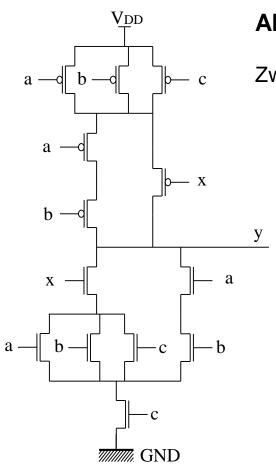
$$= (ax + bx + cx + ab + abc) \cdot c \cdot (ax + bx + cx + ab)$$

$$= (axc + bxc + abc) \cdot (ax + bx + cx + ab)$$

$$= abcx$$

bereits die erste Bedingung ist verletzt, ein Konflikt liegt vor !!!

Teil 2



Alle Eingangskombinationen mit Fehlverhalten finden:

Zwei Lösungsmöglichkeiten:

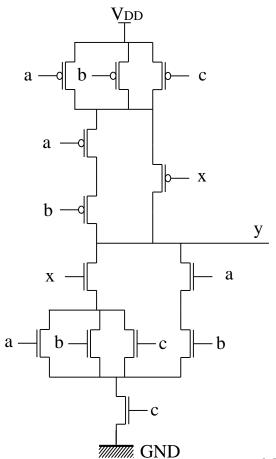
1. Algebraisch:

- Schaltung ist nicht wohldefiniert wenn: $v_0 \neq v_1$
- Kurzschlüsse bei: $v_0 \cdot v_1 \neq 0$
- <u>Undefiniertheit</u> bei: $v_0 + v_1 \neq 1 \rightarrow v_0 + v_1 \neq 0$

2. Wahrheitstabelle:

- Wahrheitstabelle für die Funktionen v₀ und v₁ aufstellen
- Kurzschluss bei: v₀(a, b...) = v₁(a, b...) = 1
- Undefiniertheit bei: $v_0(a, b...) = v_1(a, b...) = 0$

Teil 2



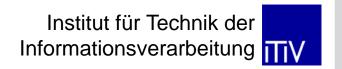
Lösung mit Wahrheitstabelle:

P-Netz:
$$v_1 = (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{x} + \overline{ab})$$

• N-Netz:
$$v_0 = c \cdot (x \cdot (a+b+c)+ab)$$

Х	С	b	а	v ₁	v _o	у
0	0	0	0	1	0	1
0	0	0	1	1	0	1
0	0	1	0	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	0	1	0	0	Undefiniert
1	0	1	0	0	0	Undefiniert
1	0	1	1	0	0	Undefiniert
1	1	0	0	1	1	Kurzschluss
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	1	0

- Kurzschluss für: (x,c,b,a) = (1,1,0,0)
- Undefiniert für: $(x,c,b,a) = (1,0,0,1) \lor (1,0,1,0) \lor (1,0,1,1)$

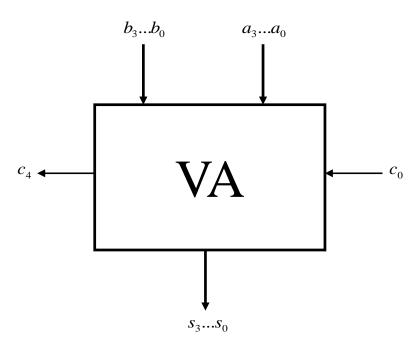


Felix Pistorius

pistorius@kit.edu

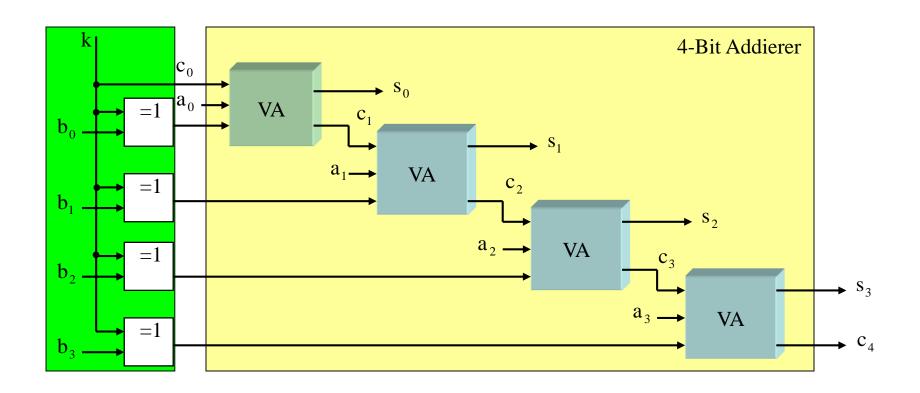
Karlsruher Institut für Technologie (KIT)

Ein 4-Bit-Volladdierer habe folgendes Blockschaltbild:

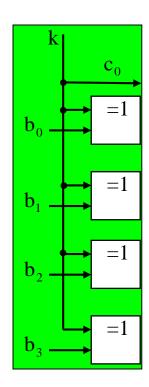


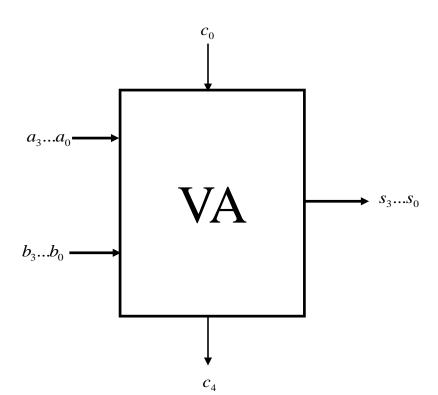
 4.1 Konstruieren Sie aus dem angegebenen Blockschaltbild des 4bit-VA und weiteren Gattern eine Schaltung, die für einen zusätzlichen Eingang sub=1 a-b berechnet. Für sub=0 soll weiterhin a+b berechnet werden.

- Erinnerung:
 - Beispiel: 4-Bit Addierer/Subtrahierer
 - Addierer mit k=0, Subtrahierer mit k=1

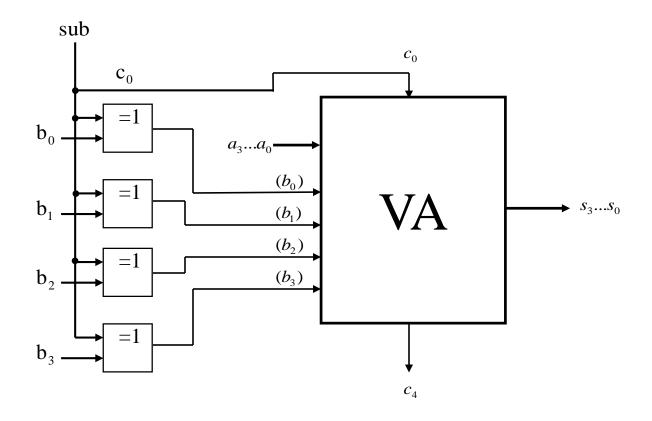


■ Übertragen des Verfahrens:





Übertragen des Verfahrens:

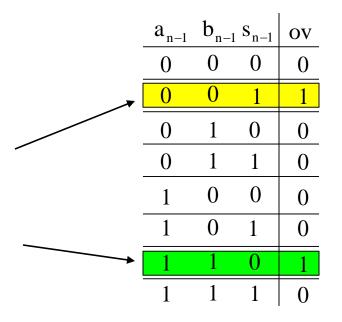


- 4.2 Konstruieren Sie eine Schaltung, die für den Fall, dass a und b jeweils in einer K2-Darstellung gegeben sind, einen Überlauf der Ergebnisse erkennt.
 - die Summe aus einer negativen und einer positiven Zahl in der K2-Darstellung kann nie zu einem Überlauf führen.
 - Überlauf ist gegeben, wenn:
 - beide Zahlen positiv sind, das Ergebnis jedoch negativ
 - 2. beide Zahlen negativ sind, das Ergebnis jedoch positiv
 - Eine negative Zahl kann leicht an einer 1 an der höchstwertigen Stelle (n-1) erkannt werden.

Funktionstabelle:

beide Zahlen positiv, Ergebnis negativ

beide Zahlen negativ, Ergebnis positiv



$$ov = \overline{a_{n-1}} \overline{b_{n-1}} s_{n-1} + a_{n-1} b_{n-1} \overline{s_{n-1}}$$

Für den 4-Bit-Addierer:

$$ov = \overline{a_3}\overline{b_3}s_3 + a_3b_3\overline{s_3}$$

