Elektromagnetische Felder

SS 2019

3. Übung

8. Aufgabe

a) Berechnen Sie das Skalarpotential Φ auf der z-Achse und daraus das elektrische Feld (auf der z-Achse) einer homogen geladenen dünnen Kreisscheibe mit dem Radius a und der Gesamtladung Q am Ursprung. Φ ist so normiert, daß es im Unendlichen verschwindet ($\Phi(\infty) = 0$).

Hinweise: Da hier eine Flächenladungsdichte vorhanden ist, muss folgendes Coulombintegral verwendet werden:

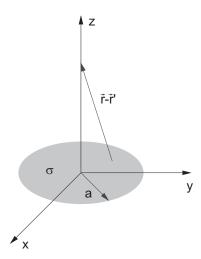
(Das Volumenintegral wird zum Flächenintegral)

$$\Phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \iint \frac{\sigma(\vec{r}')}{|\vec{r} - \vec{r}'|} df'$$

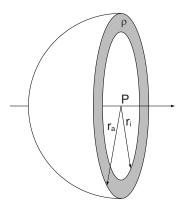
Berechnen Sie zunächst die Flächenladungsdichte σ .

Wie muss $|\vec{r} - \vec{r}'|$ ersetzt werden, um das Integral (auf der z-Achse!) zu berechnen? Machen Sie sich klar was der Unterschied zwischen \vec{r} und \vec{r}' ist.

b) Vergleichen Sie für große z das Feld mit dem einer Punktladung der Stärke Q. Anmerkung: Führen Sie dazu eine Taylorentwicklung des Feldes durch.



9. Aufgabe



- a) Berechnen Sie mit Hilfe des Coulomb-Integrals das elektrische Potential Φ (bis auf eine Konstante C) am Punkt P im Zentrum der abgebildeten Hohlhalbkugel mit der konstanten Raumladungsdichte ρ .
- b) Berechnen Sie für dieselbe Hohlhalbkugel das \vec{E} -Feld im Ursprung. $Anmerkung: \vec{E} = -grad \Phi$ kann hier nicht angewandt werden. Warum? Leiten Sie deshalb zunächst das Coulombintegral für das \vec{E} -Feld allgemein in Analogie zum Skript S.69 her.