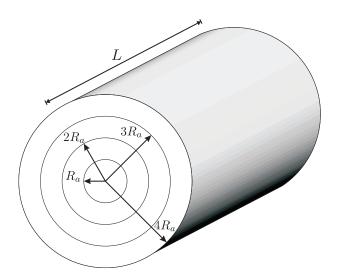

Elektromagnetische Felder

SS 2019

4. Übung


10. Aufgabe

Eine Kugel aus gut leitendem Metall (Leiter 1) mit dem Radius a wird von einer dünnen Kugelschale aus dem gleichen Material (Leiter 2) und dem Radius b (b > a) umschlossen. Das Potential im Unendlichen ist 0.

- a) Berechnen Sie das elektrische Feld \vec{E} und das Potential ϕ im ganzen Raum, wenn sich auf Leiter 1 die Ladung Q_1 und auf Leiter 2 die Ladung Q_2 befindet.
- b) Leiter 1 hat jetzt das vorgegebene Potential ϕ_1 und Leiter 2 das Potential ϕ_2 . Berechnen Sie Q_1 und Q_2 . Stellen Sie dazu die Potentialkoeffizientenmatrix (Skript S. 99) auf und berechnen Sie die Ladungen aus der Influenzkoeffizientenmatrix (Skript S. 98).
- c) Berechnen Sie die Gesamtenergie der Anordnung mit dem Integral über das elektrische Feld (Skript S. 73) sowie als Funktion der Ladungen und Potentiale mit Hilfe der Matrizen (Skript S. 99).
- d) Auf den beiden Leitern befindet sich die gleiche Ladung Q mit entgegengesetztem Vorzeichen. Berechnen Sie die Gesamtkapazität des Kondensators.

11. Aufgabe (Klausur F05 A1)

Gegeben sei ein Zylinderkondensator der Länge L. Die innere Elektrode mit dem Radius R_a liegt auf dem Potential $\Phi(R_a)=U$ und sei ideal leitfähig. Die äußere, unendlich dünne Elektrode habe den Radius $4R_a$ und liegt auf dem Potenzial $\Phi(4R_a)=0$, das Potential im Unendlichen sei $\Phi(\infty)=0$. Dazwischen befinden sich zwei Dielektrika und eine ideal leitfähige Schicht mit folgenden Dielektrizitäten und Leitfähigkeiten:

$$R \leq R_a : \kappa = \infty$$

$$R_a \leq R < 2R_a : \varepsilon_r = \frac{2R_a}{R}; \kappa = 0$$

$$2R_a \leq R < 3R_a : \kappa = \infty$$

$$3R_a \leq R < 4R_a : \varepsilon_r = 1; \kappa = 0$$

$$4R_a = R : \kappa = \infty$$

- a) Auf der inneren Elektrode befinde sich die elektrische Ladung Q. Berechnen Sie unter Vernachläßigung von Randeffekten die elektrische Feldstärke \vec{E} im Inneren des Zylinderkondensators und anschließend das Skalarpotential in Abhängigkeit von Q. Skizzieren Sie das elektrische Feld und das Skalarpotential. Berechnen Sie die Ladung Q in Abhängigkeit der Spannung U.
- b) Berechnen Sie alle Raum- und Flächenladungsdichten soweit vorhanden in Abhängigkeit von Q.
- c) Berechen Sie die Kapazität des Kondensators.
- d) Wie muss der Radius R_a mindestens gewählt werden, damit bei einer gegebenen Spannung U_{max} die Durchbruchfeldstärke E_D des Dielektrikums im Kondensator nicht überschritten wird. Wie lang muss der Kondensator dann sein, damit er die Kapazität C_0 hat?