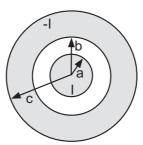

Elektromagnetische Felder

SS 2019

10. Übung

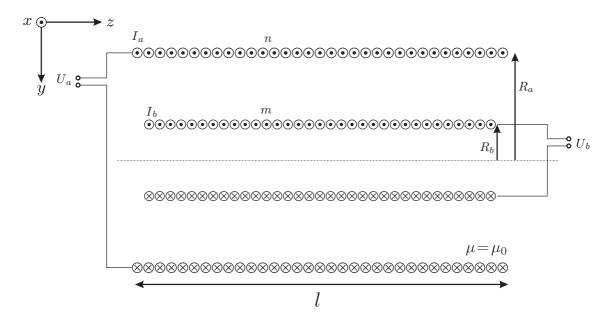
23. Aufgabe

Gegeben sind zwei unendlich lange Drähte im Abstand a. In beiden Drähten fließt der Strom $I=I_0\sin\omega t$ in jeweils entgegengesetzte Richtung. Im Abstand b vom rechten Draht befindet sich eine quadratische Leiterschleife der Seitenlänge d aus unendlich gut leitendem Material und dem Widerstand R_0 .



Die Ströme in den Drähten beeinflussen sich gegenseitig nicht, und werden auch nicht vom Magnetfeld der Leiterschleife beeinflusst.

- a) Berechnen Sie den magnetischen Fluss Φ durch die Leiterschleife.
- b) Berechnen Sie den in der Leiterschleife induzierten Strom I(t).
- c) Die Leiterschleife bewegt sich mit der Geschwindigkeit v von den Drähten weg, berechnen Sie den induzierten Strom I(t).


24. Aufgabe

Berechnen Sie den Selbstinduktionskoeffizienten pro Längeneinheit folgender Koaxialleitung. Der Strom ist in beiden Leitern homogen verteilt und fließt im äußeren Leiter in entgegengesetzter Richtung wie im inneren Leiter.

25. Aufgabe

Zwei lange Spulen der Länge l mit den unterschiedlichen Radien R_a (Primärspule) und R_b (Sekundärspule) werden ineinandergeschoben. Die Primärspule habe n Windungen, die Sekundärspule habe m Windungen.

- a) Berechnen Sie die Selbst- und Gegeninduktionskoeffizienten der Spulen. Verwenden Sie die Näherung für lange Spulen und vernachlässigen Sie das Feld im Außenbereich der Spule. (Hinweis: Machen Sie sich klar, dass die physikalische Größe des magnetischen Flusses durch $\phi_{m,ik} = \int_{F_k} \vec{B_i} d\vec{f}$ gegeben ist. Die Induktivität errechnen Sie durch $L_{ik} = N_k \cdot \phi_{m,ik}/I_i$.)
- b) An der Primärspule wird die Wechselspannung U_a angelegt. Welche Spannung U_b kann man an der unbelasteten ($I_b=0$) Sekundärspule messen? (Hinweis: Die gesamte induzierte Spannung ist: $U_i=-\sum_{k=1}^N L_{ik}\,\dot{I}_k$. Dies ergibt sich aus der Superposition aller induzierter Spannungen aus $U_{ind,ik}=-N_k\cdot\frac{d\phi_{m,ik}}{dt}=-L_{ik}\cdot\frac{dI_k}{dt}$.)
- c) Nun sei $I_b \neq 0$. Jedoch gilt $R_a = R_b$. Berechnen Sie nun U_b .