

1. EMS-Übung

14.04.2015

Dipl.-Ing. Mario Gommeringer

Elektrotechnisches Institut (ETI)

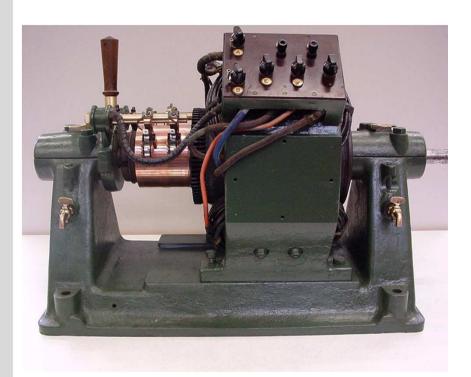
Einführung

Formales

- Mario Gommeringer
 - Raum 118, ETI, Geb. 11.10
 - E-Mail: mario.gommeringer@kit.edu
 - keine ausgewiesene Sprechstunde
- Übungsblätter sind als PDF auf den Internetseiten des ETI abrufbar.
 - http://www.eti.kit.edu/studium_uebung_ems.php
 - Bitte zukünftig selbst ausdrucken
- Die in der Übung gezeigten Folien werden ebenfalls nach der jeweiligen Übung zum Download bereitgestellt

Aufgaben & Lösungen

- Durchgehende Nummerierung der Aufgaben
- Bearbeitung der Aufgaben teilweise wochenübergreifend
- Kurzlösungen werden blockweise zum Download auf der Internetseite bereitgestellt
 - http://www.eti.kit.edu/studium_uebung_ems.php
- Passwort für Folien und Lösungen:
 - Benutzername: "ems"
 - Passwort: "Polradwinkel"


Klausur

- Termin: 09.10.2015 08:00 Uhr Dauer 2 Stunden
- Erlaubte Hilfsmittel:
 - Formelsammlung
 - Taschenrechner (nicht programmierbar)
- Schreib-/Zeichenzeug und Papier sind selbst mitzubringen
- Vorbereitung:
 - Besuch der Vorlesung und Übung
 - Rechnen der Übungsaufgaben
 - Rechnen der Klausuraufgaben

Elektrische Maschinen

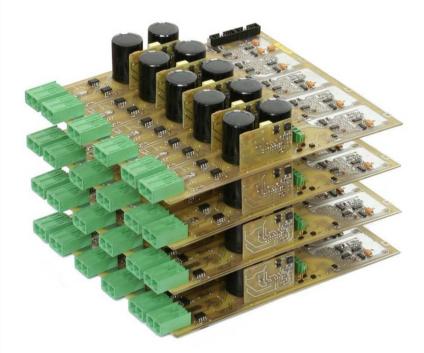
Antriebstechnik gestern...

...und heute

Elektrische Maschinen

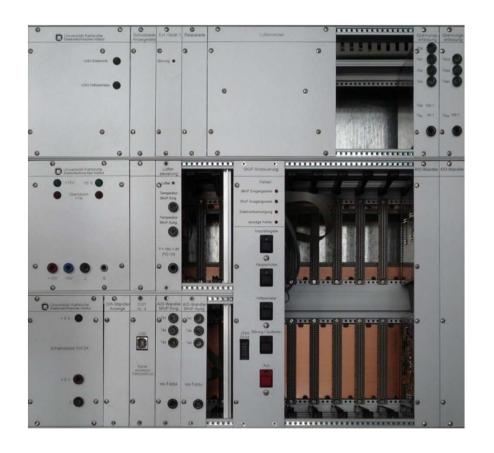
Motorprüfstand für permanenterregte Synchronmaschinen

Leistungshalbleiter



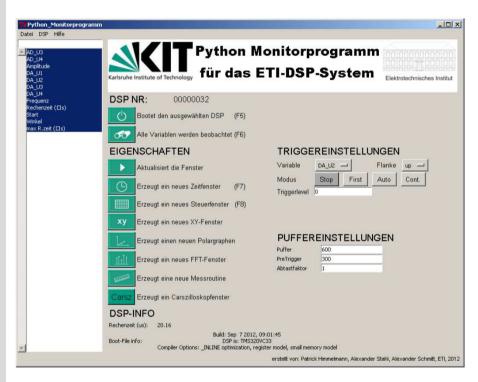
Stromrichter

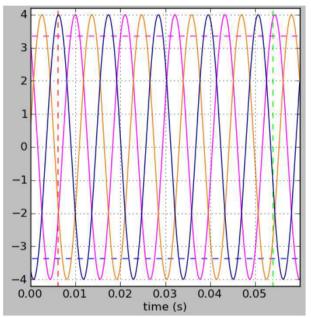
Multilevel-Umrichter

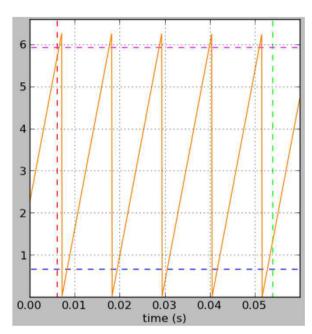

3AC-DC-3AC Umrichter mit IGBTs (ca. 130kW)

Energiespeicher mit Doppelschichtkondensatoren

Steuerungstechnik







Steuerungstechnik

Bedienprogramm zur Stromrichtersteuerung

Formelsymbole

- Zeitveränderliche Größen werden üblicherweise mit Kleinbuchstaben gekennzeichnet.
 - z.B.

$$i(t) = \hat{I} \cdot \cos(\omega t + \varphi_{\rm I})$$

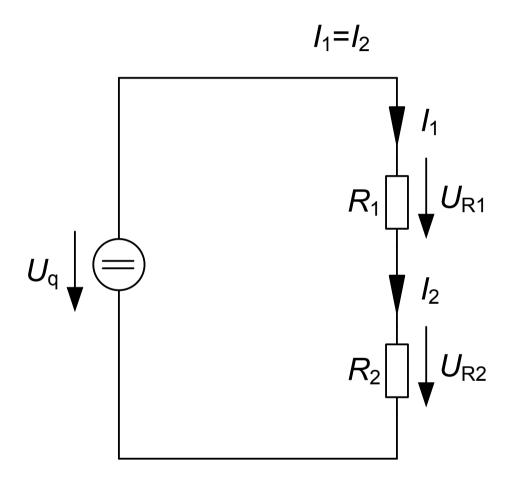
- Effektivwerte werden mit Großbuchstaben bezeichnet
 - z.B.

$$I = \sqrt{\frac{1}{T} \cdot \int_0^T i^2(t) dt}$$

- Komplexe Größen erhalten einen Unterstrich
 - z.B.

$$\underline{I} = I \cdot (\cos(\varphi_{\mathrm{I}}) + j \cdot \sin(\varphi_{\mathrm{I}}))$$

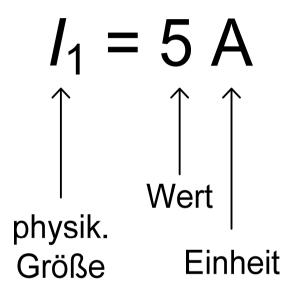
Formelsymbole



- Index für eindeutige Zuordnung:
 - allgemein:

$$U = R \cdot I$$

speziell:


$$U_{\rm R1} = R_1 \cdot I_1$$

 $U_{\rm R2} = R_2 \cdot I_2 = R_2 \cdot I_1$

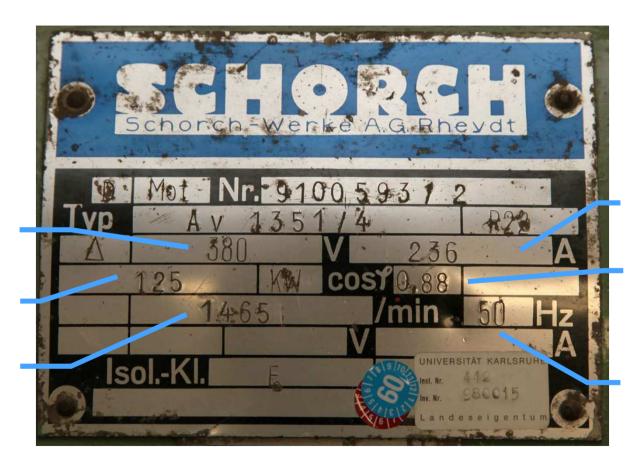
Rechnungen immer vollständig mit Einheiten durchführen

Ermöglicht zusätzliche Kontrolle während der Rechnung

Nenngrößen

- Nenngrößen werden durch die Auslegung einer Maschine oder eines Gerätes bestimmt (Hersteller, Datenblatt, Typenschild).
- Der Nennpunkt ist genau der Betriebspunkt der Maschine/des Geräts, in dem sämtliche Größen den Nenngrößen entsprechen
- Meist kennzeichnen sie die maximal zulässigen Werte, mit der ein Gerät dauerhaft betrieben werden darf
- Begrenzung beispielsweise durch gewählten Drahtquerschnitt (Erwärmung durch Verluste)
- Kennzeichnung durch ein großes N im Index
 - z.B. $I_1 = I_{1N}$

Nenngrößen



Typenschild eines Asynchronmotors

Nennspannung

Nennleistung

Nenndrehzahl

Nennstrom

Nennleistungsfaktor

Nennfrequenz

Einheiten

Beim Rechnen auf passende Einheiten achten:

$$n = 3000 \text{min}^{-1} = 3000 \text{min}^{-1} \cdot \frac{\text{min}}{60 \text{s}} = 50 \text{s}^{-1} = 50 \text{Hz}$$

Vorsicht: Umrechnen von mechanischer Winkelgeschwindigkeit und Drehzahl:

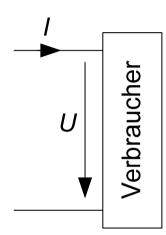
$$P = M \cdot \Omega$$
 mit $\Omega = 2\pi n$

Rotatorische Bewegung

 Für rotatorische Bewegungen gelten im Prinzip die gleichen Zusammenhänge wie für die translatorische Bewegung.

 Größen wie z.B. Kraft oder Masse haben eine entsprechende Größe in den rotatorischen Bewegungsgleichungen wie z.B:
 Drehmoment und Trägheitsmoment

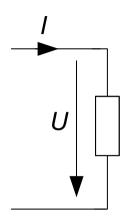
Bewegungsgleichungen



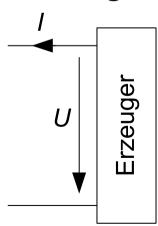
Translation			Rotation		
Name, Symbol	Gleichung	Einheit	Name, Symbol	Gleichung	Einheit
Weg s		m	Winkel φ		rad
Geschwindigkeit v	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$	$\frac{\mathrm{m}}{\mathrm{s}}$	Winkelgeschw. \dot{arphi}	$\Omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$	$\frac{\text{rad}}{\text{s}}$
Beschleunigung a	$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	$\frac{\mathrm{m}}{\mathrm{s}^2}$	Winkelbeschl. \ddot{arphi}	$\alpha = \frac{\mathrm{d}\Omega}{\mathrm{d}t}$	$\frac{\text{rad}}{\text{s}^2}$
Masse m		kg	Massenträgheitsmoment <i>J</i>	$J = \int r^2 \mathrm{d}m$	kg⋅m²
Kraft F	$F = m \cdot a$	N	Drehmoment M	$M = J \cdot \frac{\mathrm{d}\Omega}{\mathrm{d}t}$	Nm
Leistung P	$P = F \cdot v$	W	Leistung P	$P=M\cdot\Omega$	W
Arbeit W	$W = \frac{1}{2} \cdot m \cdot v^2$	J	Arbeit W	$W = \frac{1}{2} \cdot J \cdot \Omega^2$	J

Zählpfeilsysteme

Verbraucherzählpfeilsystem:



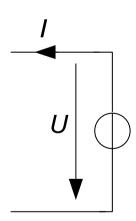
P > 0W


der Verbraucher nimmt Leistung auf

P < 0W

der Verbraucher gibt Leistung ab

Erzeugerzählpfeilsystem:



P > 0W

der Erzeuger gibt Leistung ab

P < 0W

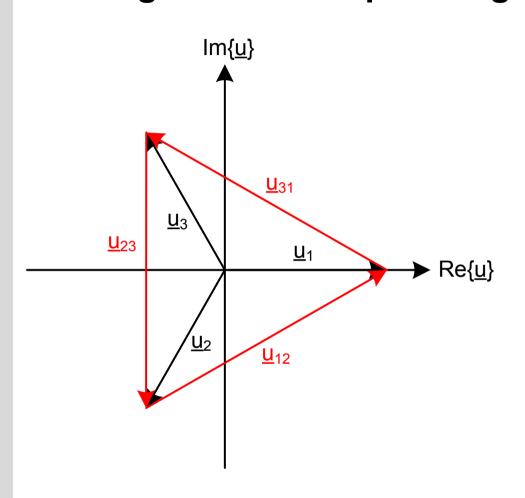
der Erzeuger nimmt Leistung auf

Drehstrom-/Drehspannungssystem

• Die <u>Strangspannung</u> U_S liegt von einer Phase zum Sternpunkt an

$$U_{\rm s} = U_1 = U_2 = U_3$$

- Die Leiterspannung $U_{\rm L}$ liegt zwischen zwei Phasen an. Die Nennspannung $U_{\rm N}$ bezieht sich in der Energietechnik auf die Leiterspannung ($U_{\rm N}=U_{\rm L}=U_{12}=U_{23}=U_{31}$)
- 120° Phasenverschiebung zwischen den Phasen


$$u_1 + u_2 + u_3 = 0V$$

$$u_{12} + u_{23} + u_{31} = 0V$$

- Der Strom in einer Phase wird als Strangstrom I_S bezeichnet.
- $I_S = I_1 = I_2 = I_3$

Strang- und Leiterspannungen

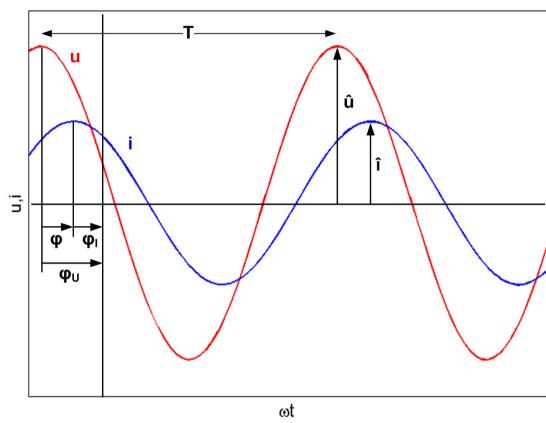
$$u_1(\omega t) = \widehat{U}\cos(\omega t)$$

$$u_2(\omega t) = \widehat{U}\cos(\omega t - \frac{2\pi}{3})$$

$$u_3(\omega t) = \widehat{U}\cos(\omega t - \frac{4\pi}{3})$$

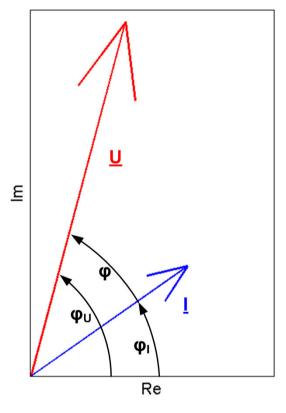
$$u_{12}(\omega t) = \widehat{U}\sqrt{3}\cos(\omega t + \frac{\pi}{6})$$

$$u_{23}(\omega t) = \widehat{U}\sqrt{3}\cos(\omega t + \frac{3\pi}{2})$$


$$u_{31}(\omega t) = \widehat{U}\sqrt{3}\cos(\omega t + \frac{5\pi}{6})$$

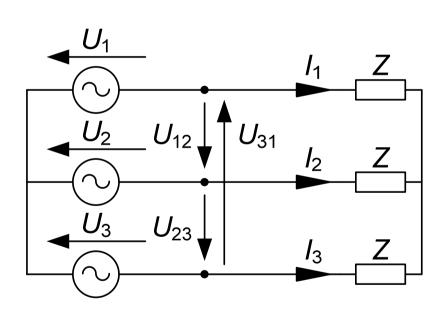
$$U_{\rm N} = \sqrt{3} \cdot U_{\rm SN}$$
 $\widehat{U} = \sqrt{2} \cdot U_{\rm SN}$

$$\widehat{U} = \sqrt{2} \cdot U_{\rm SN}$$


Komplexer Effektivwert

$$u(t) = \sqrt{2} \cdot U \cdot \cos(\omega t + \varphi_{\text{U}})$$
$$i(t) = \sqrt{2} \cdot I \cdot \cos(\omega t + \varphi_{\text{I}})$$

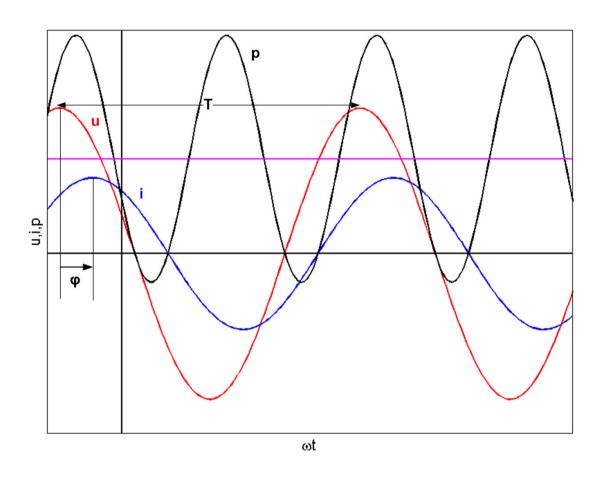
$$\varphi = \varphi_{\rm U} - \varphi_{\rm I}$$


$$\underline{U} = U \cdot e^{j\varphi_{\mathbf{U}}}$$
$$\underline{I} = I \cdot e^{j\varphi_{\mathbf{I}}}$$

- zeitunabhängige Größe
- gilt nur für sinusförmige Größen

Leistungsrechnung

Für ein symmetrisches Drehstromsystem gilt:


Scheinleistung
$$S = 3U_{\rm S}I_{\rm S}$$

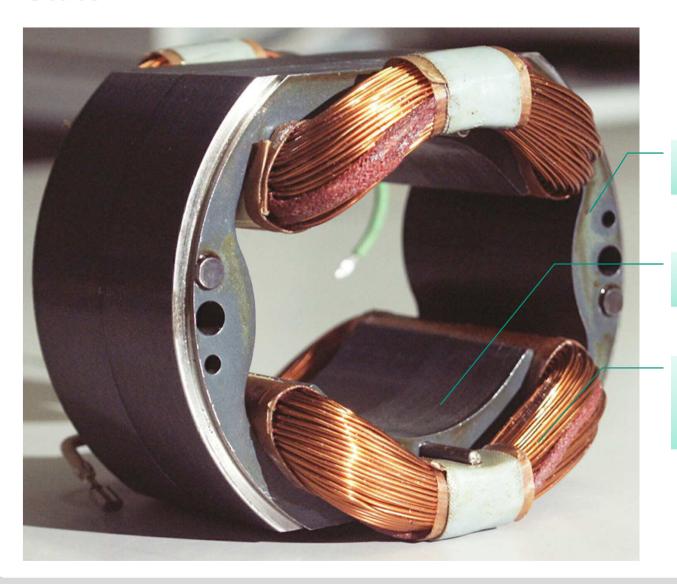
$$\Rightarrow S = 3\frac{U_{\rm N}}{\sqrt{3}}I_{\rm S} = \sqrt{3}U_{\rm N}I_{\rm S}$$

$$P = 3U_{S}I_{S}\cos\varphi = S\cos\varphi$$
$$Q = 3U_{S}I_{S}\sin\varphi = S\sin\varphi$$

Momentanleistung und Wirkleistung

- Die Momentanleistung ergibt sich zu $p(t) = u(t) \cdot i(t)$
- Die Wirkleistung entspricht dem Mittelwert des Zeitverlaufs der Momentanleistung

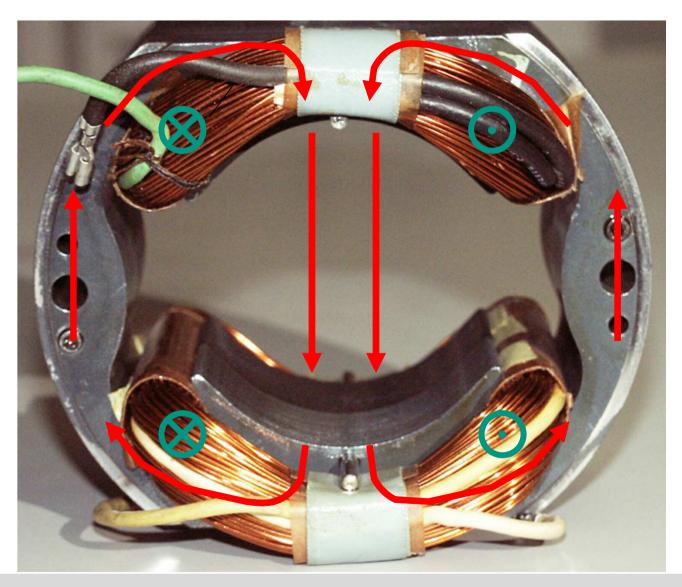
2. EMS-Übung


21.04.2015 Dipl.-Ing. Mario Gommeringer

Elektrotechnisches Institut (ETI)

Gleichstrommaschine

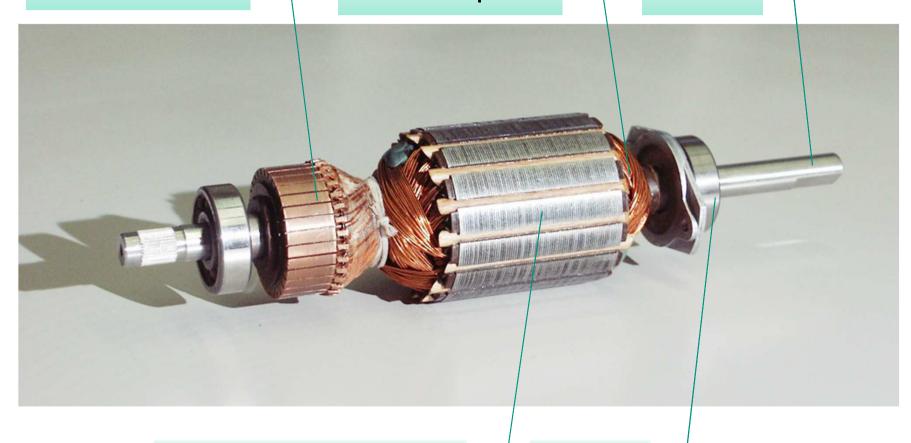
Stator


Joch

Polschuh

Feldwicklung/ Erregerwicklung

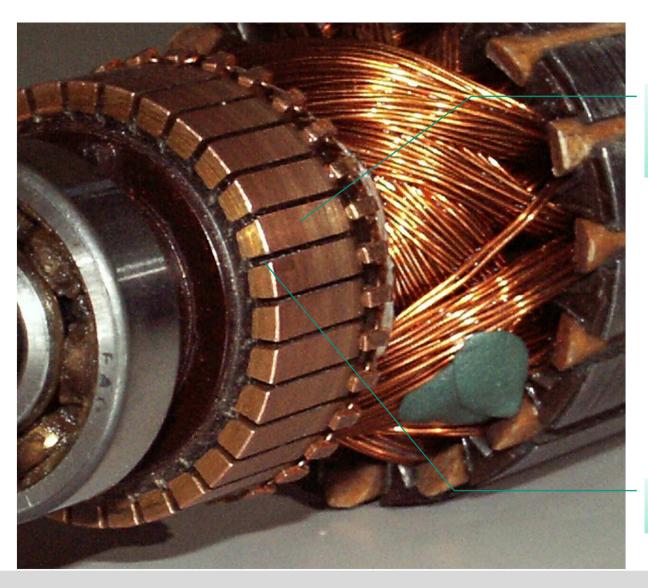
Stator


Läufer/Rotor

Kommutator

Wickelkopf

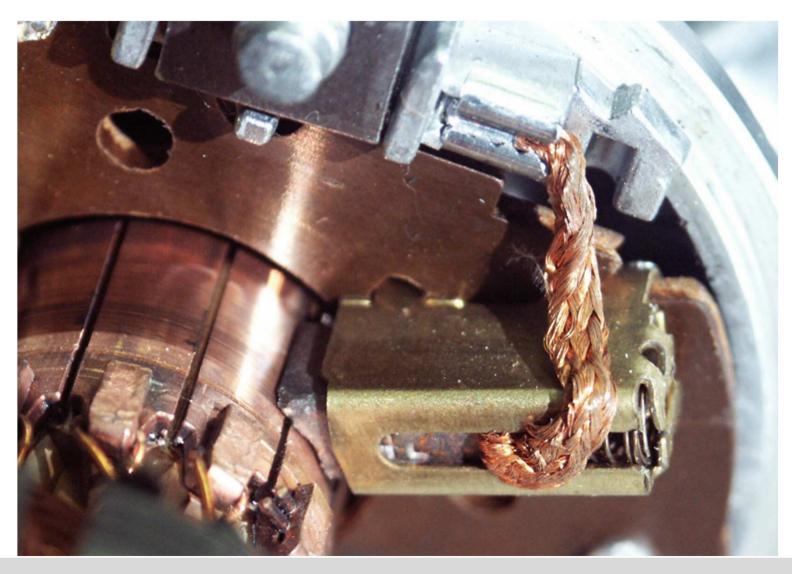
Welle



Rotorblechpaket

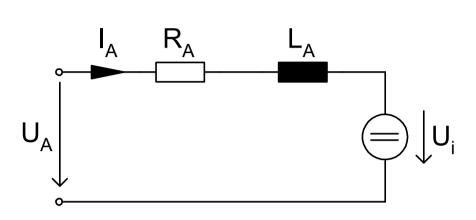
Lager

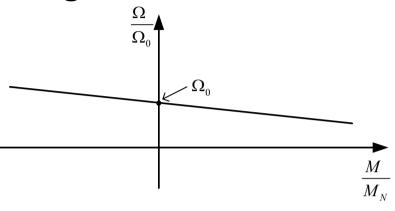
Kommutator



Kommutator-lamellen

Isolation


Kohlen



Ersatzschaltbild und Grundgleichungen

Innere Spannung:

Ankerspannungsgleichung:

Ankerspannungsgleichung stationär: $U_A = R_A I_A + c\Phi\Omega$

Momentengleichung:

Kennlinie:

$$u_i = c\Phi\Omega$$

$$u_A = R_A i_A + L_A \frac{di_A}{dt} + c\Phi\Omega$$

$$U_A = R_A I_A + c\Phi\Omega$$

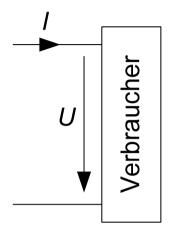
$$M_i = c\Phi I_A$$

$$\Omega = \frac{U_A}{c\Phi} - \frac{R_A}{(c\Phi)^2} M_i$$

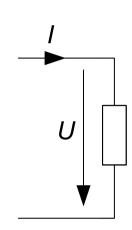
$$c\Phi \sim I_F$$

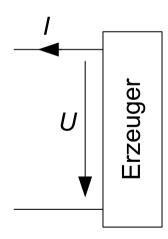
Erregung:

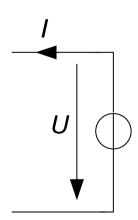
5. EMS-Übung


12.05.2015
Dipl.-Ing. Mario Gommeringer

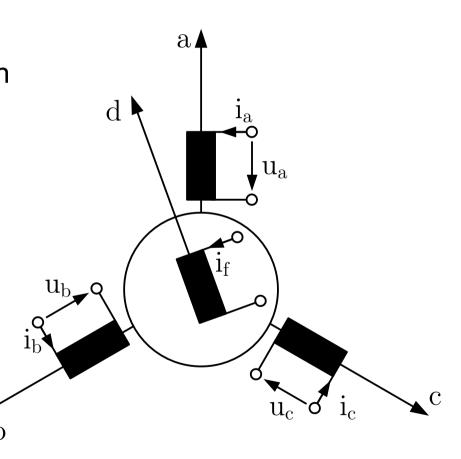
Elektrotechnisches Institut (ETI)


Synchronmaschine


Zählpfeilsystem

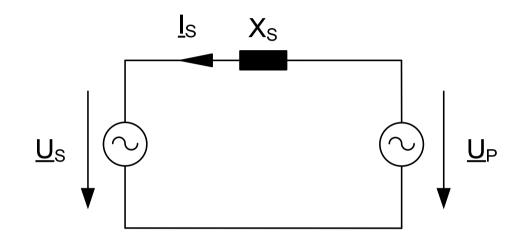


P > 0Wder Verbraucher nimmt Leistung aufP < 0Wder Verbraucher gibt Leistung ab


P > 0Wder Erzeuger gibt Leistung abP < 0Wder Erzeuger nimmt Leistung auf

Synchronmaschine

- Ständerwicklung (Drehstromwicklung)
- Räumlich um 120° versetzt (Polpaarzahl p=1)
- Die Magnetfelder der einzelnen Wicklungen bilden ein gemeinsames, rotierendes Magnetfeld
- Erregerwicklung auf dem Läufer oder
 Permanentmagnet erzeugt ein konstantes
 Magnetfeld



Einphasiges Ersatzschaltbild

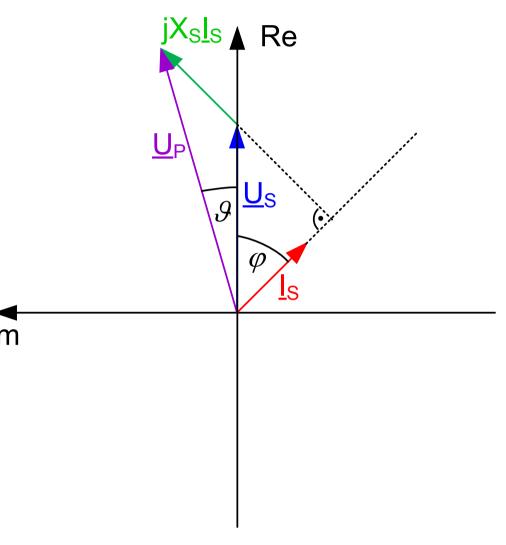
Annahmen:

- Symmetrische Maschine
- Speisung am symmetrischen **Drehstromnetz**
- Erzeugerzählpfeilsystem
- Turboläufer: $X_S = X_d = X_a$
- Für große Maschinen wird der Wicklungswiderstand vernachlässigt
- Die Nennspannung bezieht sich bei Drehstrommaschinen immer auf die Leiterspannung

$$U_{L} = U_{S} \cdot \sqrt{3}$$

$$U_{N} = U_{SN} \cdot \sqrt{3}$$

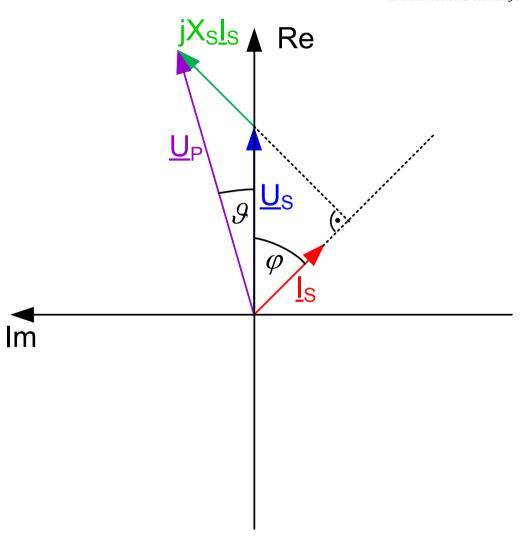
$$U_{\rm N} = U_{\rm SN} \cdot \sqrt{3}$$


Zeigerdiagramm

- Der Betriebszustand der Synchronmaschine kann über das Zeigerdiagramm dargestellt werden (Lage des Stromzeigers in der komplexen Ebene)
- $\cos(\varphi) = \cos(-\varphi) \Rightarrow$ $\cos(\varphi) \text{ ist nicht eindeutig}$

Es muss zwischen

- $\cdot \cos(\varphi)$ übererregt
- $cos(\varphi)$ untererregt unterschieden werden



Zeigerdiagramm

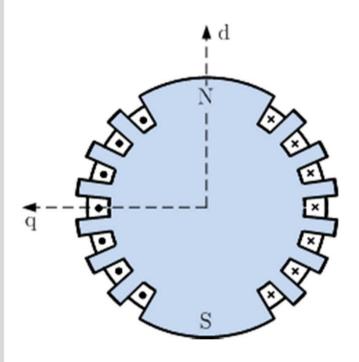
Karlsruher Institut für Technologie

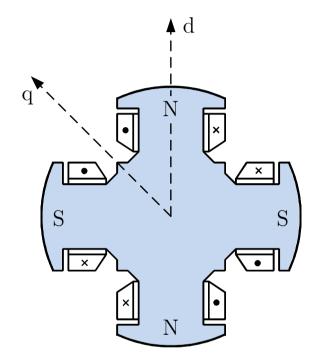
- Der Winkel φ wird zwischen \underline{I}_S und \underline{U}_S eingezeichnet.
- Der Winkel zwischen der Strangspannung <u>U</u>_S und der Polradspannung <u>U</u>_P wird als Polradwinkel θ bezeichnet.
- Der Polradwinkel ist abhängig von der Belastung der Maschine

$$M_{\rm el} = M_{\rm k} \sin \vartheta$$

Blindleistungseinstellung / Drehzahl

- Durch Variation des Erregerstroms kann die Aufnahme bzw. Abgabe von Blindleistung an der Synchronmaschine eingestellt werden.
- Eine übererregte Synchronmaschine zeigt kapazitives Verhalten
- Eine untererregte Synchronmaschine zeigt induktives Verhalten
- Die Polradspannung U_P ist proportional zum Erregerstrom I_f (Sättigung vernachlässigt) und proportional zur Drehzahl n


$$U_{\rm P} \sim I_{\rm f}$$
 $U_{\rm P} \sim n$


Die Drehzahl einer Synchronmaschine ist durch die Frequenz des speisenden Drehstromsystems und die Polpaarzahl bestimmt:

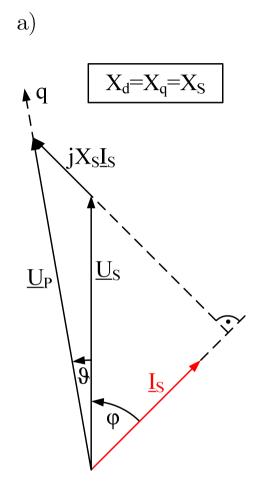

$$\Omega = \frac{\omega_{\rm S}}{p} = \frac{2\pi f}{p}$$

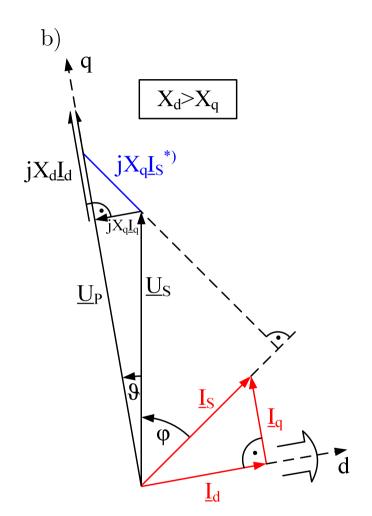
Läuferbauformen

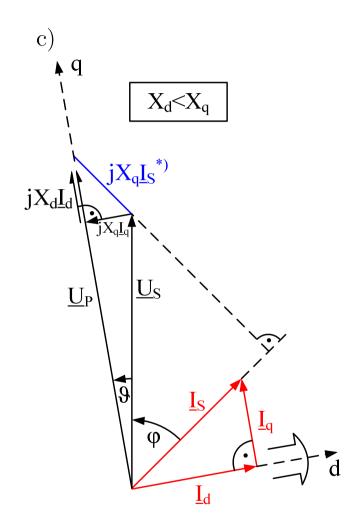
Elektrisch erregter Turborotor

$$p = 1$$
$$L_{d} = L_{q}$$

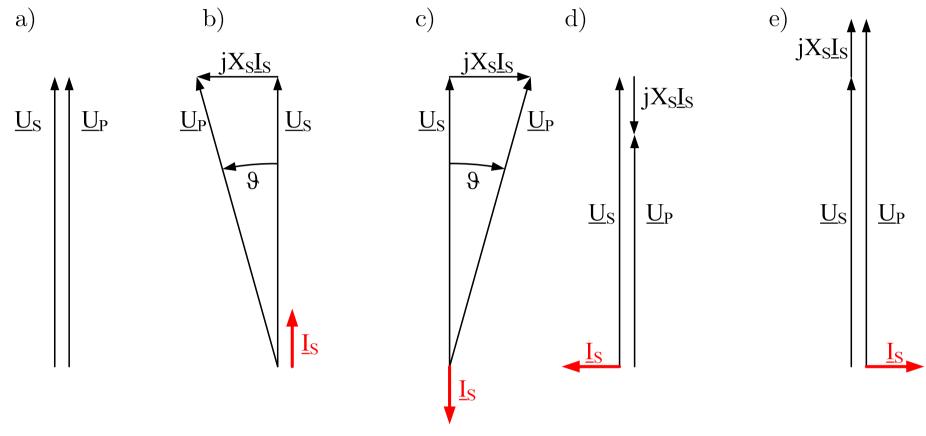
Elektrisch erregter Schenkelpolrotor p = 2


$$p = 2$$
$$L_{d} > L_{q}$$


Rotor mit vergrabenen Magneten


$$p = 2$$
$$L_{d} < L_{q}$$

Zeigerdiagramm für verschiedene Läuferbauformen



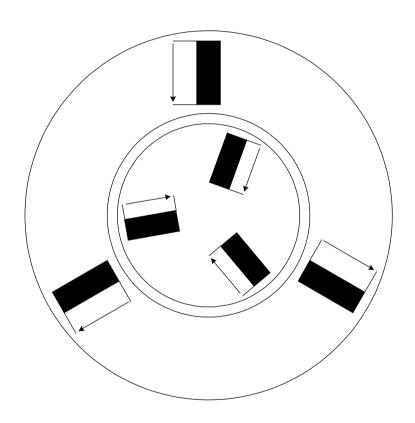
*) Hilfskonstruktion zur Festlegung der Richtung von \underline{U}_P

Zeigerdiagramm für verschiedene Betriebszustände

Synchronmaschine mit Turboläufer am starren Netz

- a) Leerlauf nach Synchronisierung
- b) Generatorischer Betrieb ohne Blindleistungsaufnahme oder –abgabe
- c) Motorischer Betrieb ohne Blindleistungsaufnahme oder –abgabe
- d) Phasenschieberbetrieb untererregt (SM wirkt wie eine Dreiphasendrossel)
- e) Phasenschieberbetrieb übererregt (SM wirkt wie ein Kondensator je Phase)

8. EMS-Übung


02.06.2015
Dipl.-Ing. Mario Gommeringer

Elektrotechnisches Institut (ETI)

Asynchronmaschine

Aufbau Asynchronmaschine

- Drehstromwicklung im Stator,wie bei der Synchronmaschine
- Drehstromwicklung auf dem Rotor beim Schleifringläufer
- Stäbe anstatt Läuferwicklung beim Kurzschlussläufer
- Generierung des Läufermagnetfelds durch das Statorfeld

Läufertypen

Kurzschlussläufer

Schleifringläufer

Rotorfrequenz

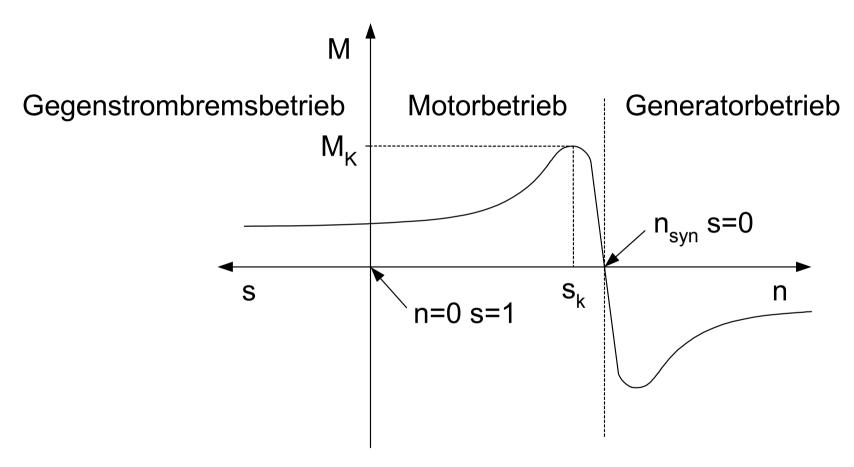
Im asynchronen Betrieb wird im Rotor ein Drehspannungssystem induziert mit der Frequenz:

$$f_R = f_S - p \cdot n$$

 Die im Rotor induzierte Spannung führt zu einem Stromfluss in der Rotorwicklung, der mit dem Magnetfeld des Stators zur Bildung des Drehmoments an der Welle führt.

Schlupf

■ Bezieht man f_R auf die Frequenz des Ständerfelds f_S , erhält man den Schlupf s:


$$S = \frac{f_R}{f_S}$$

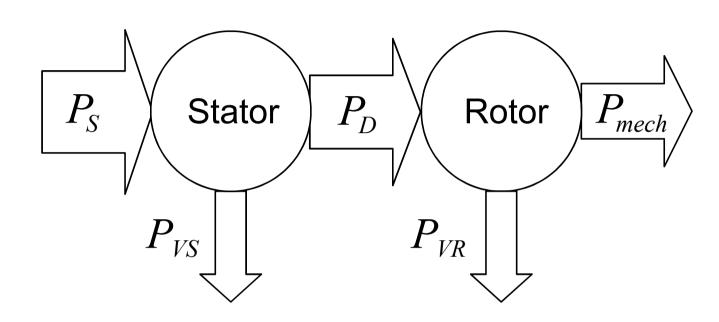
Dieser kann auch durch die Drehzahl ausgedrückt werden:

$$s = \frac{n_{syn} - n}{n_{syn}}$$
 mit $n_{syn} = \frac{f_s}{p}$

Kennlinie

Typische Kennlinie einer Asynchronmaschine

Kloss'sche Formel



Der Verlauf der Kennlinie wird beschrieben durch die Kloss'sche Formel:

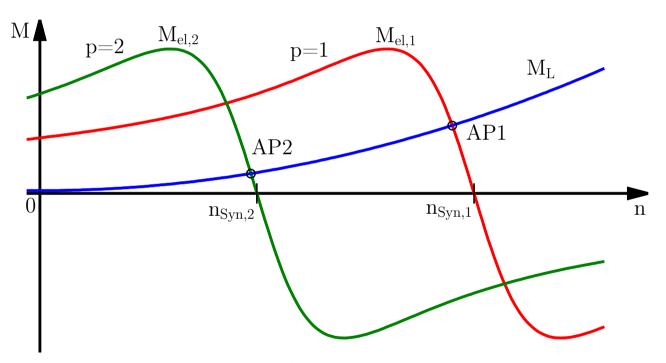
$$\frac{M_i}{M_k} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}}$$

Leistungsaufteilung (Motor ohne Reibungsverluste)

$$P_S = 3U_S I_S \cos \varphi$$

$$P_{D} = P_{S} - P_{VS} = P_{S} - 3R_{S}I_{S}^{2} = M_{i}\Omega_{syn}$$

$$P_{VR} = sP_D = 3R_R'I_R'^2$$


$$P_{mech} = P_D - P_{VR} = (1 - s)P_D = M_i \Omega$$

Drehzahlverstellung: Polumschaltung

Polumschaltung:

- Verschieben des synchronen Punktes
- Grobe Abstufung
- Aufwändige Wicklung

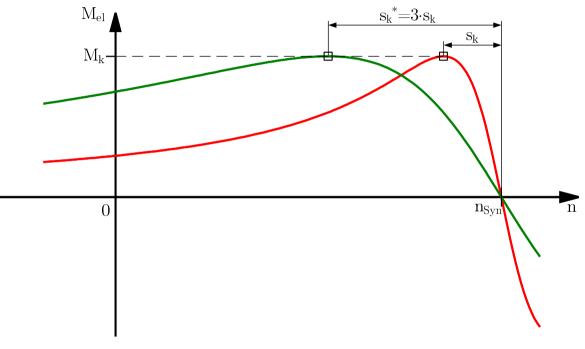
AP1: Arbeitspunkt mit p=1

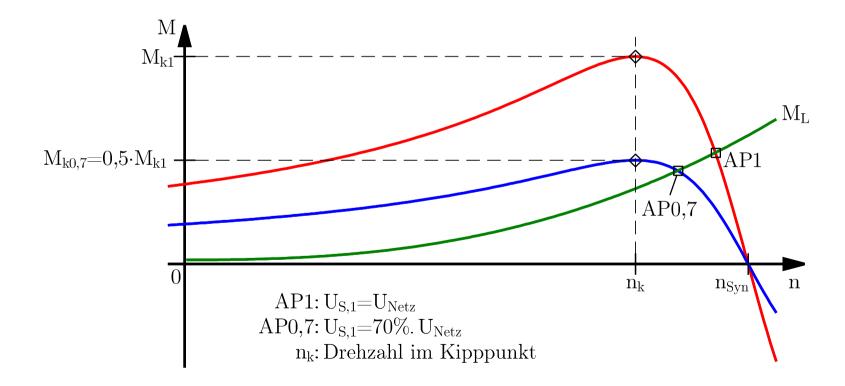
AP2: Arbeitspunkt mit p=2

 $n_{\mathrm{Syn},1}\!\!:\!\mathrm{Synchrondrehzahl}$ für $p{=}1$

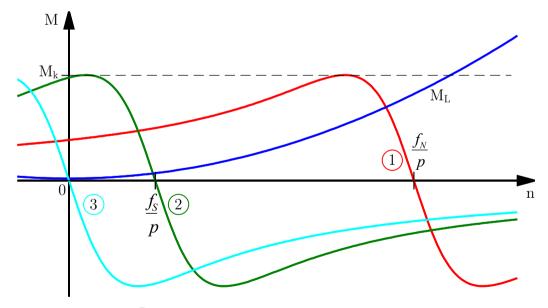
 $n_{Syn,2}$: Synchrondrehzahl für p=2

Horizontale Streckung der Kennlinie


$$\frac{S^*}{S} = \frac{R_R + R_V}{R_R}$$



Drehzahlverstellung


- Verringerung der Statorspannung
 - Drehmoment fällt mit dem Quadrat der Spannung

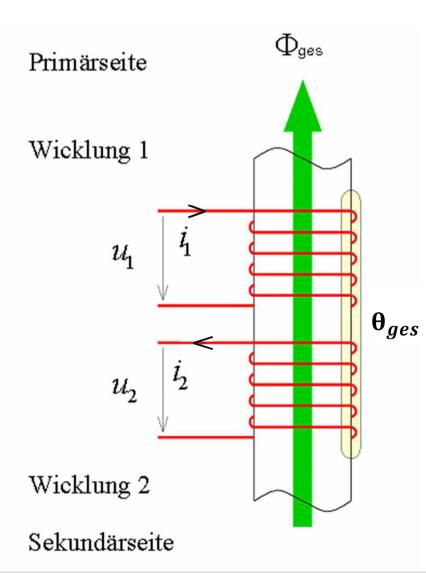
Drehzahlverstellung

- Umrichterspeisung der Maschine (Spannungs-Frequenz-Steuerung)
- Drehspannungssystem in Amplitude und Frequenz steuerbar
- Verschieben der Kennlinie auf der Drehzahlachse
- Geringe Verluste
- stufenlos verstellbar
- hoher elektronischer Aufwand

- \bigcirc Kennlinie im Netzbetrieb ($f_S=f_N$)
- 2 Kennlinie bei einstellbarer Frequenz f_S
- (3) Kennlinie bei f_S=0

8. EMS-Übung

09.06.2015


Dipl.-Ing. Mario Gommeringer

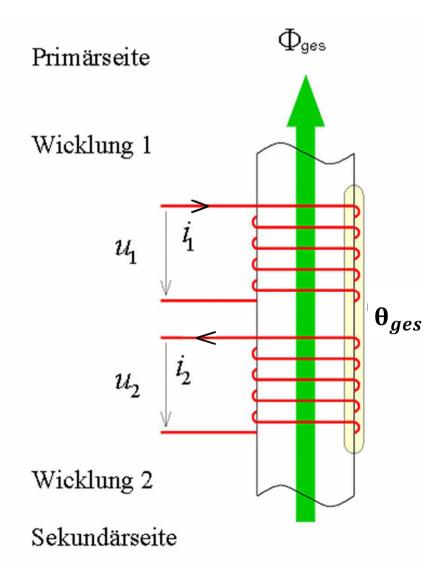
Elektrotechnisches Institut (ETI)

Transformator

Strom in einer Wicklung erzeugt die Durchflutung:

$$\theta = wi$$

Magnetischer Fluss abhängig vom Kernmaterial:


$$\Phi = \Lambda wi$$

Alle Wicklungen erzeugen den Gesamtfluss:

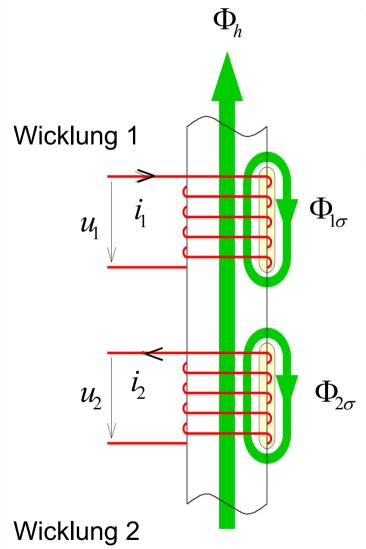
$$\Phi_{ges} = \Lambda(\theta_1 - \theta_2) = \Lambda(w_1i_1 - w_2i_2)$$

Die Änderung der magnetischen Flussdichte induziert eine Spannung in der Wicklung:

$$u = w \frac{d\Phi}{dt} = \frac{d\Psi}{dt}$$

Spannungsübersetzung:

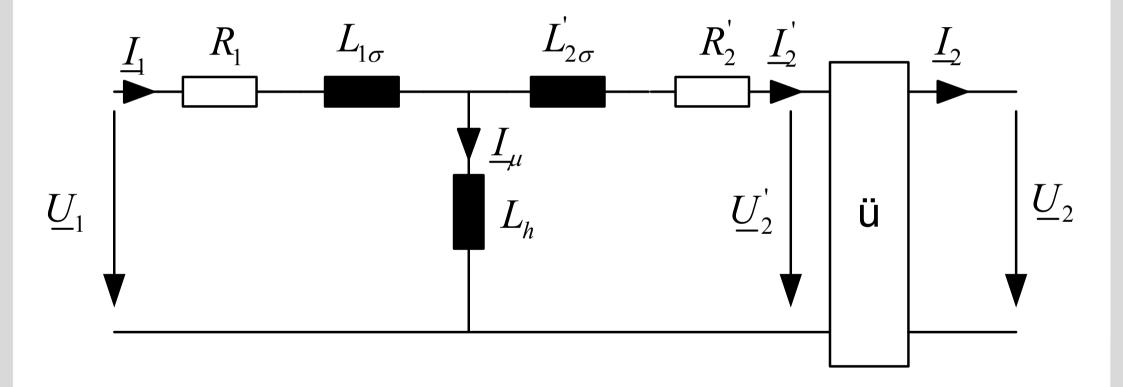
$$u_1 = w_1 \frac{d\Phi_{\text{ges}}}{dt}$$
 $\Rightarrow \frac{u_1}{u_2} = \frac{w_1}{w_2} = \ddot{u}$ $u_2 = w_2 \frac{d\Phi_{\text{ges}}}{dt}$


Stromübersetzung:

$$S_1 = S_2 = U_1 \cdot I_1 = U_2 \cdot I_2$$

$$\Rightarrow \frac{U_1}{U_2} = \frac{I_2}{I_1} = \ddot{\mathbf{u}} \qquad \Rightarrow \frac{I_1}{I_2} = \frac{1}{\ddot{\mathbf{u}}}$$

Streuinduktivität



- Der Fluss, der in Summe von den Durchflutungen beider Wicklungen erzeugt wird und beide Wicklungen durchtritt, ist der Hauptfluss
- Die Durchflutung jeder Wicklung erzeugt einen Streufluss, der die andere Wicklung nicht erreicht und nur in ihr selbst eine Spannung induziert

$$u_1 = w_1 \cdot \left(\frac{d\Phi_h}{dt} + \frac{d\Phi_{1\sigma}}{dt}\right)$$
 $u_2 = w_2 \cdot \left(\frac{d\Phi_h}{dt} + \frac{d\Phi_{2\sigma}}{dt}\right)$
$$\Phi_h = \Lambda_h \cdot (w_1 i_1 - w_2 i_2)$$

$$\Phi_{1\sigma} = \Lambda_\sigma \cdot w_1 i_1$$

$$\Phi_{2\sigma} = -\Lambda_\sigma \cdot w_2 i_2$$

Ersatzschaltbild

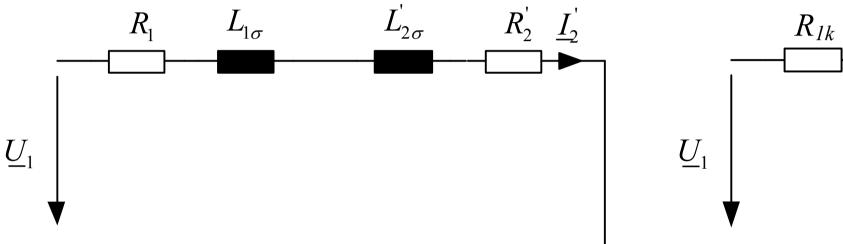
09.06.2015 Dipl.-Ing. Mario Gommeringer Elektrotechnisches Institut (ETI)

Umgerechnete Größen

 Um das T-Ersatzschaltbild zeichnen zu können, müssen die Größen der Primäroder Sekundärwicklung auf die jeweils andere Seite umgerechnet werden.

- Beispiel: Wicklungswiderstand der Sekundärseite R₂ auf Primärseite umrechen:
 - Die Verlustleistung, die an dem umgerechneten Widerstand abfällt, soll identisch sein: $P_{R2} = R_2 \cdot I_2^2 = P'_{R2} = R'_2 \cdot I'_2^2$

$$\frac{R_2}{R_2'} = \left(\frac{I_2'}{I_2}\right)^2 = \frac{1}{\ddot{\mathbf{u}}^2} \qquad \Rightarrow R_2' = \ddot{\mathbf{u}}^2 \cdot R_2$$


Für die Streuinduktivität gilt analog:


$$L'_{2\sigma} = \ddot{\mathbf{u}}^2 \cdot L_{2\sigma}$$

Kurzschlussersatzschaltbild

Im Kurzschluss kann der Magnetisierungsstrom vernachlässigt werden.

Für große Transformatoren kann der Magnetisierungsstrom, wie beim Kurzschlussfall, auch für den Nennbetrieb vernachlässigt werden.

$$R_{1k} = R_1 + R'_2$$

$$L_{1k} = L_{1\sigma} + L'_{2\sigma}$$

Relative Kurzschlussspannung

 Durch die Verwendung von bezogenen Größen kann das Betriebsverhalten des Transformators unabhängig von seiner Leistung dargestellt werden.

$$u_k = \frac{Z_{1k} \cdot I_{1N}}{U_{1N}} = \frac{Z_{2k} \cdot I_{2N}}{U_{2N}}$$

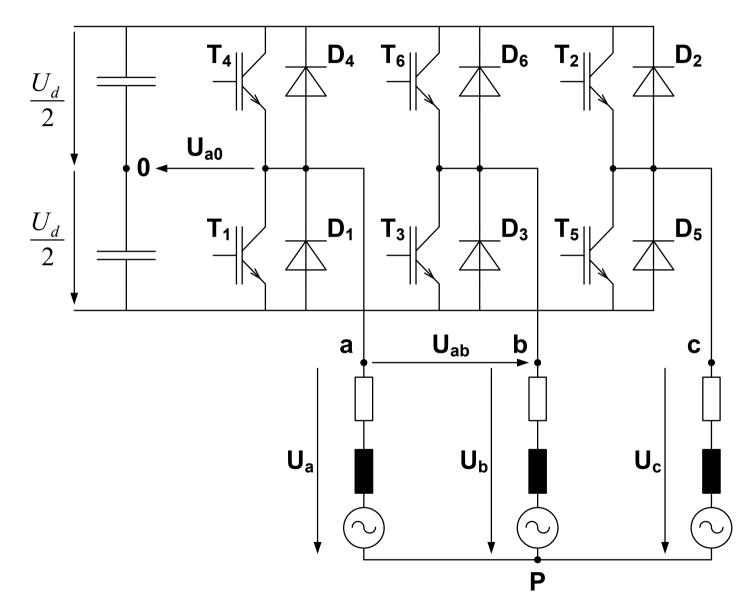
$$u_r = \frac{R_{1k} \cdot I_{1N}}{U_{1N}} = \frac{R_{2k} \cdot I_{2N}}{U_{2N}}$$

$$u_x = \frac{X_{1k} \cdot I_{1N}}{U_{1N}} = \frac{X_{2k} \cdot I_{2N}}{U_{2N}}$$

$$u_k = \sqrt{u_r^2 + u_x^2}$$

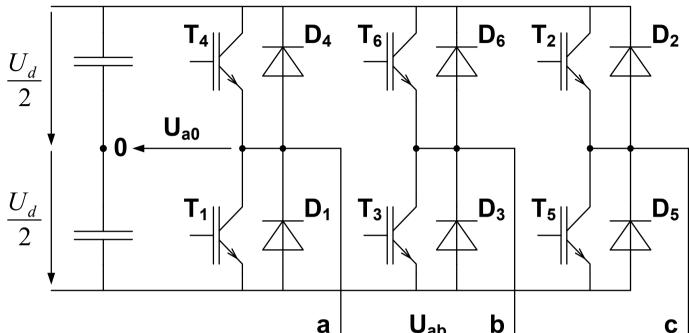
13. EMS-Übung

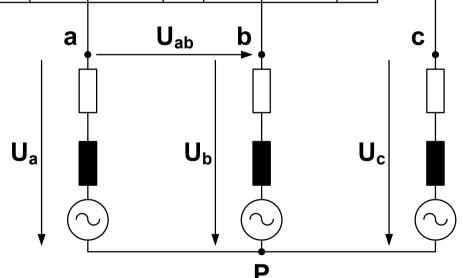
07.07.2015
Dipl.-Ing. Mario Gommeringer


Elektrotechnisches Institut (ETI)

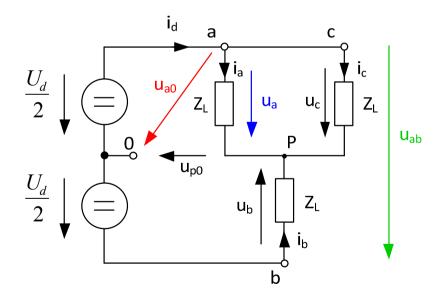
Blocktaktung / Raumzeigermodulation

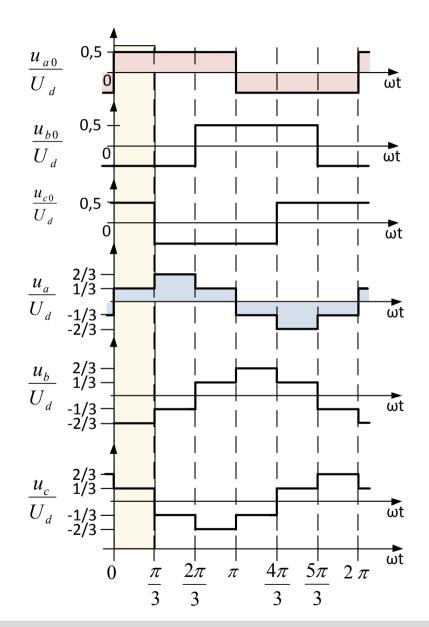
Selbstgeführte Drehstrombrücke


Schaltbild


Selbstgeführte Drehstrombrücke

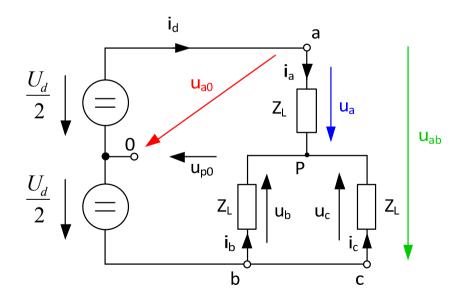
Schaltbild

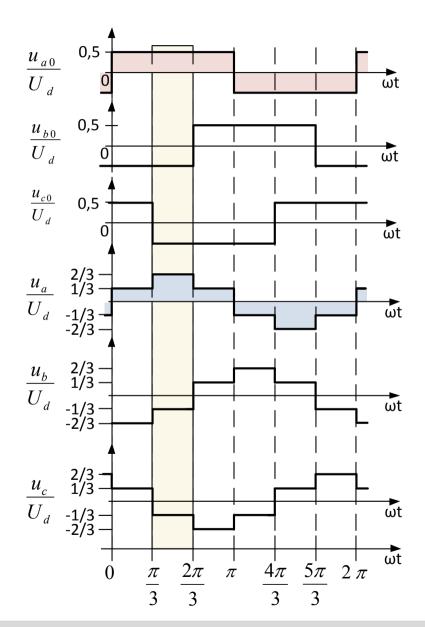

- In jedem Brückenzweig darf immer nur ein Transistor eingeschaltet sein
- Dann ergeben sich 2³ = 8 diskrete
 Schaltzustände



Blocktaktung (1)

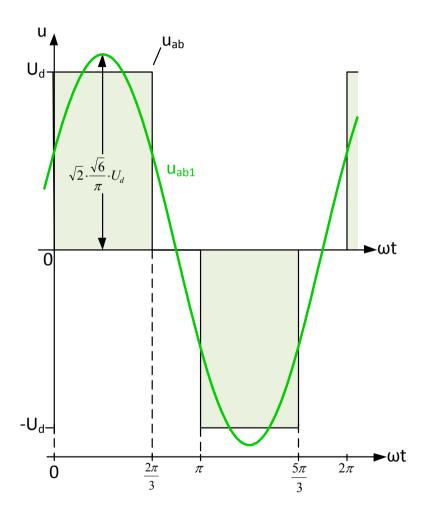
- Blockförmige Spannungen am Ausgang
- Die Amplitude der
 Ausgangsspannungen ist nicht einstellbar





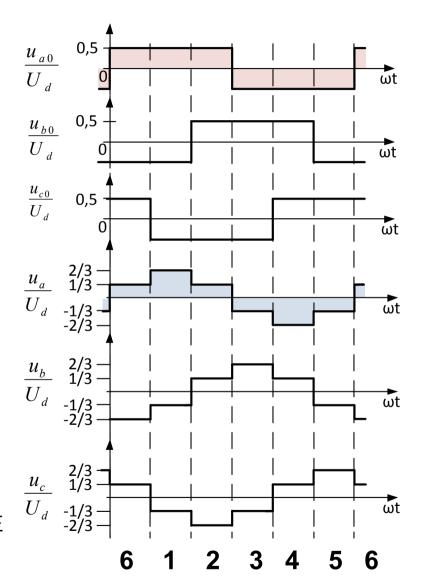
Blocktaktung (2)

- Blockförmige Spannungen am Ausgang
- Die Amplitude der
 Ausgangsspannungen ist nicht einstellbar


Blocktaktung: Grundschwingung

- Zur Drehmomenterzeugung in einer Drehfeldmaschine tragen nur die Grundschwingungen von Strom und Spannung bei
- Grundschwingung der Außenleiterspannung bei Blocktaktung:

$$\widehat{U} = \sqrt{2} \cdot \frac{\sqrt{6}}{\pi} \cdot U_d$$

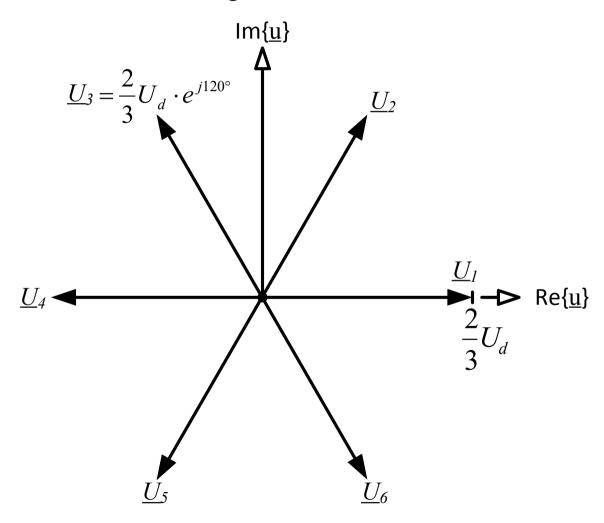

$$U_{eff} = \frac{\sqrt{6}}{\pi} \cdot U_d$$

Raumzeigerdarstellung (1)

- Rechnerische Transformation von drei (Strang-)größen in eine komplexe Größe
- $\underline{u} = \frac{2}{3} \cdot \left(u_1 + \underline{a} \cdot u_2 + \underline{a}^2 \cdot u_3 \right)$
- mit: $\underline{a} = e^{j \cdot \frac{2\pi}{3}} = -\frac{1}{2} + j \frac{\sqrt{3}}{2}$
- Beispielberechnungen:
- **21**: $\underline{u}_1 = \frac{2}{3} U_d \left(\frac{2}{3} \frac{1}{3} \underline{a} \frac{1}{3} \underline{a}^2 \right) = \frac{2}{3} U_d$
- **Z3**: $\underline{u}_3 = \frac{2}{3} U_d \left(-\frac{1}{3} + \frac{2}{3} \underline{a} \frac{1}{3} \underline{a}^2 \right) = \frac{2}{3} U_d e^{j\frac{2\pi}{3}}$

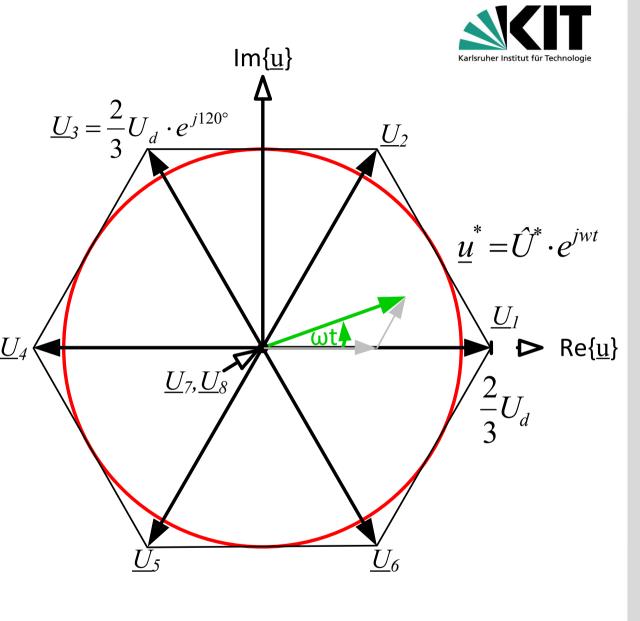
Raumzeigerdarstellung (2)

07.07.2015


Zustand Nr.	1	2	3	4	5	6	7	8
$ m U_{a0}/(U_d/2)$	1	1	-1	-1	-1	1	1	-1
$ m U_{b0}/(U_d/2)$	-1	1	1	1	-1	-1	1	-1
$ m U_{c0}/(U_d/2)$	-1	-1	-1	1	1	1	1	-1
$U_{\mathrm{x}}/(2/3U_{\mathrm{d}})$	e ^{j0°}	e ^{j60°}	e ^{j120°}	e ^{j180°}	e ^{j240°}	e ^{j300°}	0	0

Dipl.-Ing. Mario Gommeringer Elektrotechnisches Institut (ETI)

Raumzeigerdarstellung der Schaltzustände bei Blocktaktung

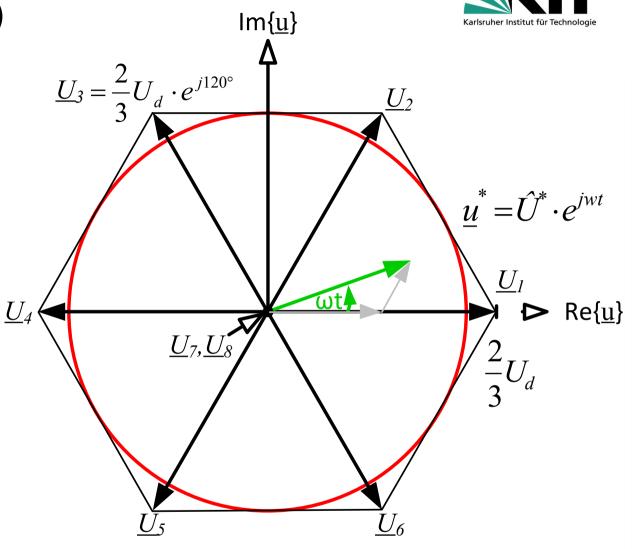

Es ergeben sich sechs Raumzeiger für die sechs diskreten Schaltzustände:

Raumzeigermodulation (1)

Einstellen eines beliebigen
 Winkels des gewünschten
 Raumzeigers durch
 Mittelwertbildung (schnelles
 Umschalten) zwischen zwei
 benachbarten Schaltzuständen

Verkürzen der Amplitude durch zusätzliche Verwendung der Freilaufzustände

Raumzeigermodulation (2)

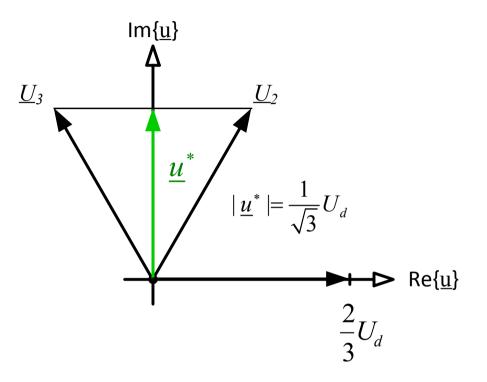

 Es können alle Raumzeiger innerhalb des aufgespannten Sechsecks erreicht werden

Für sinusförmige

Ausgangsspannungen können

alle Raumzeiger innerhalb des

Innkreises erreicht werden.


Durch den Vorfaktor $\frac{2}{3}$ in der Raumzeigerdefinition wird erreicht, dass die Länge des Raumzeigers der Amplitude der einzelnen Strangspannungen entspricht

Grundschwingung bei Raumzeigermodulation

- Der Radius des Innkreises beträgt $\frac{1}{\sqrt{3}} \cdot U_d$
- Die Amplitude der Strangspannungen beträgt damit ebenfalls $\widehat{U}_S = \frac{U_d}{\sqrt{3}}$
- Effektivwert der Außenleiterspannungen:

$$U_L = \frac{U_d}{\sqrt{2}}$$

Zum Vergleich: Effektivwert bei Blocktaktung: U

$$U_L = \frac{\sqrt{6}}{\pi} \cdot U_d$$