

Vorlesung 03: Zeitharmonische ebene Wellen und Poynting-Vektor

Elektromagnetische Wellen | Wintersemester 2021/22

Prof. Dr.-Ing. Sebastian Randel | 16. November 2021

Vorlesungsinhalte

- 1. Wiederholung
- 2. Zeitharmonische ebene Wellen
- 3. Der Poynting-Vektor
- 4. Was Sie gelernt haben sollten

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Wiederholung

2. Zeitharmonische ebene Wellen

3. Der Poynting-Vektor

4. Was Sie gelernt haben sollten

Karlsruher Institut für Technologie

Fourierreihe

 \blacksquare Jede periodische reellwertige Funktion f(t) mit der Periode T kann angenähert werden durch die Fourierreihe

$$f(t) \approx f_N(t) = \frac{A_0}{2} + \sum_{n=1}^N A_n \cos(2\pi nt/T - \varphi_n)$$

wobei $A_n = \sqrt{a_n^2 + b_n^2}$ and $\varphi_n = \arctan(b_n/a_n)$ und

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(2\pi nt/T) dt$$
$$b_n = \frac{2}{T} \int_0^T f(t) \sin(2\pi nt/T) dt$$

• Die Funktion f(t) kann also als Überlagerung von N gewichteten zeitharmonischen Schwingungen und ihrem Mittelwert angenähert werden.

• Für periodische Funktionen mit der Periode *T* ist eine solche orthonomale Funktionenbasis gegeben durch die Sinus- und Cosinusschwingungen

• Für periodische Funktionen mit der Periode *T* ist eine solche orthonomale Funktionenbasis gegeben durch die Sinus- und Cosinusschwingungen

• Für periodische Funktionen mit der Periode *T* ist eine solche orthonomale Funktionenbasis gegeben durch die Sinus- und Cosinusschwingungen

• Für periodische Funktionen mit der Periode T ist eine solche orthonomale Funktionenbasis gegeben durch die Sinus- und Cosinusschwingungen

• Für periodische Funktionen mit der Periode *T* ist eine solche orthonomale Funktionenbasis gegeben durch die Sinus- und Cosinusschwingungen

Superpositionsprinzip

- Bei einer Vielzahl von Problemstellungen soll die Ausbreitung von elektromagnetischen Wellen ausgehend von einem zeitabhängigen Quellenfeld mit den Feldvektoren $\mathbf{E}(\mathbf{r}_0, t)$ und $\mathbf{H}(\mathbf{r}_0, t)$ am Ort \mathbf{r}_0 berechnet werden.
- Sofern das Ausbreitungsmedium *linear* ist, kann dabei das Superpositionsprinzip verwendet werden.
- Hierbei kann das Quellensignal in eine beliebige Reihendarstellung überführt werden, z.B. in die Fourierreihendarstellung.
- Die Wellenausbreitung kann nun für einzeln jeden Summanden berechnet werden. Die Gesamtlösung ergibt sich dann als Überlagerung bzw. Superposition der Einzellösungen.
- Bei vielen Problemstellungen lässt sich die Berechnung auf diese Weise deutlich vereinfachen.
- Es gilt zu beachten, dass das Superpositionsprinzip für*nichtlineare* Medien nicht gilt.

Komplexe Zeigerschreibweise

• Bei zeitharmonischer Anregung mit der Frequenz $\omega = 2\pi/T$ lässt sich beispielsweise das Vektorfeld der elektrischen Feldstärke separieren in

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})\cos(\omega t + \varphi)$$

wobei der Vektor \mathbf{r} den Ortsvektor in einem gegebenen Koordinatensystem darstellt.

• Es ist in vielen Fällen hilfreich, den obigen Ausdruck mittels des komplexen Zeigers darzustellen als

 $\underline{\mathbf{E}}(\mathbf{r},t) = \mathbf{E}(\mathbf{r}) \exp\left(j\left[\omega t + \varphi\right]\right)$

- Dabei zeigt der Unterstrich an, dass es sich um eine komplexe Größe handelt.
- Der reellwertige Feldvektor ergibt sich als Realteil des komplexen Zeigers zu

$$\mathbf{E}(\mathbf{r},t) = \Re \left\{ \mathbf{\underline{E}}(\mathbf{r},t) \right\} = \frac{1}{2} \left[\mathbf{\underline{E}}(\mathbf{r},t) + \mathbf{\underline{E}}^{*}(\mathbf{r},t) \right]$$

wobei der hochgestellte Asterisk * für die komplexe Konjugation steht.

Komplexe Amplitudenschreibweise

 $\hfill\blacksquare$ Bei harmonischer Zeitabängigkeit ergibt sich die Ableitung des komplexen Zeigers nach t zu

$$\frac{\partial \mathbf{\underline{E}}(\mathbf{r},t)}{\partial t} = \frac{\partial \mathbf{E}(\mathbf{r}) \exp\left(j\left[\omega t + \varphi\right]\right)}{\partial t} = j\,\omega \mathbf{\underline{E}}(\mathbf{r},t)$$

- Die komplexe Zeigerschreibweise für zeitharmonische Größen lässt sich noch weiter vereinfachen, indem die Zeitabhängigkeit nur noch durch die gegebene Kreisfrequenz $\omega = 2\pi/T$ impliziert wird.
- Wir können den komplexen Zeiger dann schreiben als

$$\underline{\mathbf{E}}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})\exp(\mathrm{j}[\omega t + \varphi]) = \mathbf{E}(\mathbf{r})\exp(\mathrm{j}\,\varphi)\exp(\mathrm{j}\,\omega t) = \underline{\mathbf{E}}(\mathbf{r})\exp(\mathrm{j}\,\omega t)$$

wobei $\mathbf{E}(\mathbf{r}) = \mathbf{E}(\mathbf{r}) \exp(j\varphi)$ die komplexe Amplitude implizit bezogen auf die Kreisfrequenz ω angibt.

Maxwellsche Gleichungen

Die Maxwellschen Gleichungen f
ür homogene Medien mit <u>D</u> = ε<u>E</u> und <u>B</u> = μ<u>H</u> gelten also, bei harmonischer Anregung mit der Kreisfrequenz ω, entsprechend auch f
ür die komplexen Amplituden:

$$\begin{aligned} \nabla \times \mathbf{\underline{H}}(\mathbf{r}) &= \kappa \mathbf{\underline{E}}(\mathbf{r}) + \mathbf{j}\,\omega\varepsilon \mathbf{\underline{E}}(\mathbf{r}) = \mathbf{j}\,\omega\varepsilon \left(1 - \mathbf{j}\,\frac{\kappa}{\omega\varepsilon}\right) \mathbf{\underline{E}}(\mathbf{r}) = \mathbf{j}\,\omega\varepsilon \mathbf{\underline{E}}(\mathbf{r}) & (\mathbf{I}) & Durchflutungsgesetz \\ \nabla \times \mathbf{\underline{E}}(\mathbf{r}) &= -\mathbf{j}\,\omega\mu \mathbf{\underline{H}}(\mathbf{r}) & (\mathbf{II}) & Induktionsgesetz \\ \nabla \cdot \mathbf{\underline{E}}(\mathbf{r}) &= \frac{1}{\varepsilon}\,\underline{\rho}(\mathbf{r}) & (\mathbf{III}) & Gaußsches \ Gesetz \\ \nabla \cdot \mathbf{\underline{H}}(\mathbf{r}) &= 0 & (\mathbf{IV}) \end{aligned}$$

- Bei der Verwendung der komplexen Amplitude entfällt also die explizite Zeitabhängigkeit.
- Für leitfähige Medien können wir die komplexe Permittivität einführen als:

$$\underline{\varepsilon} = \varepsilon \left(1 - j \frac{\kappa}{\omega \varepsilon} \right)$$

Die Helmholtz-Gleichung

- Die Wellengleichungen ergeben sich auch für komplexe Amplituden aus den Maxwellschen Gleichungen.
- Dafür wird analog zu den zuvor betrachteten reellwertigen Vektorfeldern die Rotation über das Induktions- bzw. das Durchflutungsgesetz gebildet:

$$\nabla \times (\nabla \times \mathbf{\underline{E}}) = \nabla \left(\nabla \cdot \mathbf{\underline{E}} \right) - \Delta \mathbf{\underline{E}} = -j \,\omega \mu \left(\nabla \times \mathbf{\underline{H}} \right) = -j \,\omega \mu \left(j \,\omega \underline{\varepsilon} \mathbf{\underline{E}} \right) = \omega^2 \mu \underline{\varepsilon} \mathbf{\underline{E}} = \underline{k}^2 \mathbf{\underline{E}}$$
$$\nabla \times (\nabla \times \mathbf{\underline{H}}) = \nabla \left(\nabla \cdot \mathbf{\underline{H}} \right) - \Delta \mathbf{\underline{H}} = j \,\omega \underline{\varepsilon} \left(\nabla \times \mathbf{\underline{E}} \right) = j \,\omega \underline{\varepsilon} \left(-j \,\omega \mu \mathbf{\underline{H}} \right) = \omega^2 \mu \underline{\varepsilon} \mathbf{\underline{H}} = \underline{k}^2 \mathbf{\underline{H}}$$

 \bullet Dabei wird die komplexe Wellenzahl mit $c=1/\sqrt{\mu\varepsilon}$ und der Wellenlänge $\lambda=2\pi c/\omega$ zu

$$\underline{k} = \pm \omega \sqrt{\mu \underline{\varepsilon}} = \pm \frac{\omega}{c} \sqrt{1 - \mathrm{j} \frac{\kappa}{\omega \varepsilon}} = \pm \frac{2\pi}{\lambda} \sqrt{1 - \mathrm{j} \frac{\kappa}{\omega \varepsilon}}$$

• Ist das Medium ferner raumladungsfrei, so dass neben $\nabla\cdot {\bf \underline{H}}=0$ auch $\nabla\cdot {\bf \underline{E}}=0$ und

$$\Delta \mathbf{\underline{E}} + \underline{k}^2 \mathbf{\underline{E}} = 0$$
$$\Delta \mathbf{\underline{H}} + \underline{k}^2 \mathbf{\underline{H}} = 0$$

• In dieser Form wird die Wellengleichung auch Helmholtz-Gleichung genannt.

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Wiederholung

2. Zeitharmonische ebene Wellen

3. Der Poynting-Vektor

4. Was Sie gelernt haben sollten

Zeitharmonische ebene Wellen: Helmholtzgleichungen

• Für zeitharmonische ebene Wellen in homogenen, linearen Medien hängen die komplexen Zeiger $\underline{\mathbf{H}}(z,t) = \underline{\mathbf{H}}(z) \exp(\mathbf{j}\,\omega t)$ und $\underline{\mathbf{E}}(z,t) = \underline{\mathbf{E}}(z) \exp(\mathbf{j}\,\omega t)$ nur von der Ortskoordinate z und der Zeit t ab. Die Helmholtz-Gleichungen werden somit zu

$$\frac{\partial^2 \underline{\mathbf{H}}}{\partial z^2} + \underline{k}^2 \underline{\mathbf{H}} = 0 \quad \text{und} \quad \frac{\partial^2 \underline{\mathbf{E}}}{\partial z^2} + \underline{k}^2 \underline{\mathbf{E}} = 0$$

Diese gewöhnlichen linearen Differentialgleichungen zweiter Ordnung haben die Lösungen

$$\mathbf{\underline{H}}(z,t) = \mathbf{\underline{H}}_{0}^{+} \exp(\mathbf{j}[\omega t - \underline{k}z]) + \mathbf{\underline{H}}_{0}^{-} \exp(\mathbf{j}[\omega t + \underline{k}z])$$
$$\mathbf{\underline{E}}(z,t) = \mathbf{\underline{E}}_{0}^{+} \exp(\mathbf{j}[\omega t - \underline{k}z]) + \mathbf{\underline{E}}_{0}^{-} \exp(\mathbf{j}[\omega t + \underline{k}z])$$

• Dabei sind $\underline{\mathbf{H}}_{0}^{+}$ und $\underline{\mathbf{E}}_{0}^{+}$ die Feldvektoren zum Zeitpunkt t = 0 am Ort z = 0 für die sich in +z-Richtung ausbreitende Welle und $\underline{\mathbf{H}}_{0}^{-}$ und $\underline{\mathbf{E}}_{0}^{-}$ die entsprechenden komplexen Amplituden für die sich in -z-Richtung ausbreitende Welle.

• Neben den Helmholtzgleichungen gelten weiterhin das Durchflutungsgesetz

$$\nabla \times \underline{\mathbf{H}}(z,t) = \begin{pmatrix} \underline{\partial}\underline{H}_{z} \\ \overline{\partial}\underline{\partial} \\ \underline{\partial}\underline{H}_{z} \\ \underline{\partial}\underline{H}_{z} \\ \overline{\partial}\underline{x} \\ \overline{\partial}\underline{x} \\ \overline{\partial}\underline{x} \\ \overline{\partial}\underline{y} \\ \overline{\partial}\underline{y} \\ \overline{\partial}\underline{x} \\ \overline{\partial}\underline{y} \\ \underline{y} \\ \overline{\partial}\underline{y} \\ \underline{y} \\ \underline$$

und das Induktionsgesetz

$$\nabla \times \mathbf{\underline{E}}(z,t) = \begin{pmatrix} \underbrace{\partial \underline{E}_{z}} \\ \partial \underline{\partial} \\ \partial \underline{E}_{x} \\ \partial \underline{E}_{z} \\ \partial \underline{E}_{z$$

Zeitharmonische ebene Wellen: Feldkomponenten

- Setzen wir nun die obigen Lösungen der Wellengleichung ein, so erhalten wir...
- ...für die in +z-Richtung laufende Welle

• ... für die in -z-Richtung laufende Welle

- Dabei verwenden wir den komplexen Wellenwiderstand $\underline{Z} = \sqrt{\mu/\underline{\varepsilon}} = \underline{k}/(\omega\underline{\varepsilon}).$
- In jede Richtung sind also jeweils \underline{E}_x und \underline{H}_y bzw. \underline{E}_y und \underline{H}_x miteinander gekoppelt. Beide Feldkomponenten überlagern sich linear.

Zeitharmonische ebene Wellen: Wellenvektor

- Bisher haben wir ebene Wellen betrachtet, welche sich entlang der z-Achse ausgebreitet haben.
- $\hfill Die Ausbreitung in Richtung des Einheitsvektors <math display="inline">\mathbf{e}_a$ kann beschrieben werden durch den Wellenvektor

$$\mathbf{\underline{k}} = \underline{k} \, \mathbf{e}_{\mathsf{a}}$$

• Mit dem gegebenen H-Feldvektor $\underline{\mathbf{H}}_0$ bei t=0 und z=0 erhalten wir

$$\mathbf{\underline{H}} = \mathbf{\underline{H}}_0 \,\mathrm{e}^{\mathrm{j}(\omega t - \mathbf{\underline{k}} \cdot \mathbf{r})}$$

Den E-Feldvektor erhalten wir gemäß

$$\bar{\mathbf{E}} = \bar{Z} \left(\bar{\mathbf{H}} \times \mathbf{e}_{\mathsf{a}} \right)$$

 \bullet Die Vektoren $\underline{\mathbf{E}},\ \underline{\mathbf{H}}$ und \mathbf{e}_{a} bilden dabei ein Rechtsschraubensystem.

Zeitharmonische ebene Wellen: Phasenfronten

• Für eine harmonische ebene Welle mit der Kreisfrequenz ω erhalten wir senkrecht zur Ausbreitungsrichtung zu einem gegebenen Zeitpunkt $t = t_0$ für $\omega t_0 \pm \Re\{\underline{\mathbf{k}}\} \cdot \mathbf{r} = \phi_0 \pm n2\pi$ im Abstand $\lambda = 2\pi c/\omega$ Ebenen konstanter Phase, welche auch als Phasen- oder Wellenfronten bezeichnet werden.

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Wiederholung

2. Zeitharmonische ebene Wellen

3. Der Poynting-Vektor

4. Was Sie gelernt haben sollten

Elektromagnetische Feldenergie

- Elektrische und magnetische Felder speichern Energie (vgl. Plattenkondensator bzw. Spule).
- $\hfill Die in einem Volumen V gespeicherte elektrische bzw. magnetische Energie kann bestimmt werden aus$

$$W_{\mathsf{e}} = \int_{V} w_{\mathsf{e}} \, \mathrm{d}V \qquad \mathsf{und} \qquad W_{\mathsf{m}} = \int_{V} w_{\mathsf{m}} \, \mathrm{d}V$$

• Dabei sind $w_{\rm e}$ und $w_{\rm m}$ auf das Volumen bezogene *Energiedichten*, die bestimmt werden können aus

$$w_{\mathsf{e}} = \frac{1}{2} \mathbf{E} \cdot \mathbf{D}$$
 und $w_{\mathsf{m}} = \frac{1}{2} \mathbf{H} \cdot \mathbf{B}$

• Die gesamte elektromagnetische Feldenergie ergibt sich als Summe der elektrischen und der magnetischen Feldenergie zu $W_{\rm em} = W_{\rm e} + W_{\rm m}$ und $w_{\rm em} = w_{\rm e} + w_{\rm m}$

Der Satz von Poynting (I)

• Der Satz von Poynting besagt, dass jede Änderung dW_{em} der in einem Volumen V gespeicherten elektromagnetischen Feldenergie in einem Zeitintervall dt beschrieben werden kann als

$$\mathrm{d}W_{\mathsf{em}} = - \underbrace{\int_{O} \mathbf{S} \, \mathrm{d}\mathbf{O} \, \mathrm{d}t}_{\mathsf{durch} \mathsf{die} \mathsf{Hüllfläche} O} - \underbrace{\int_{V} \mathbf{E} \cdot \mathbf{J} \, \mathrm{d}V \, \mathrm{d}t}_{\mathsf{in} \mathsf{Wärmeenergie}}_{\mathsf{umgewandelte} \mathsf{Feldenergie}} - \underbrace{\int_{V} \mathbf{E} \cdot \mathbf{J} \, \mathrm{d}V \, \mathrm{d}t}_{\mathsf{in} \mathsf{Wärmeenergie}}_{\mathsf{umgewandelte} \mathsf{Feldenergie}}$$

 Der Vektor S wird hierbei als Poynting Vektor bezeichnet. Er beschreibt Betrag und Richtung der pro Flächenelement und Zeiteinheit abgestrahlten elektromagnetischen Feldenergie. Er hat somit die Einheit W/m².

Der Satz von Poynting (II)

Bezogen auf das Zeitintervall dt lässt sich der Satz von Poynting auch als Leistungsbilanz ausdrücken:

$$\frac{\mathrm{d}W_{\mathsf{em}}}{\mathrm{d}t} = -\int_{O} \mathbf{S} \,\mathrm{d}\mathbf{O} - \int_{V} \mathbf{E} \cdot \mathbf{J} \,\mathrm{d}V$$

• Mit Hilfe des Gaußschen Satzes und mittels der Energiedichte ergibt sich daraus

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} w_{\mathsf{em}} \, \mathrm{d}V = -\int_{V} \nabla \cdot \mathbf{S} \, \mathrm{d}V - \int_{V} \mathbf{E} \cdot \mathbf{J} \, \mathrm{d}V$$

Dies lässt sich mit den Energiedichten für das elektrische und das magnetische Feld schreiben als

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \mathbf{E} \cdot \mathbf{D} + \frac{1}{2} \mathbf{H} \cdot \mathbf{B} \right) = -\nabla \cdot \mathbf{S} - \mathbf{E} \cdot \mathbf{J}$$
(1)

Der Satz von Poynting (III)

• Mit $D = \varepsilon E$ und $B = \mu H$ sowie unter der Annahme, dass ε und μ nicht von der Zeit abhängen, lässt sich zeigen, dass

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \mathbf{E} \cdot \mathbf{D} + \frac{1}{2} \mathbf{H} \cdot \mathbf{B} \right) = \mathbf{E} \cdot \frac{\mathrm{d}\mathbf{D}}{\mathrm{d}t} + \mathbf{H} \cdot \frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}$$
(2)

• Aus (1) und (2) ergibt sich somit

$$\nabla \cdot \mathbf{S} = -\mathbf{E} \cdot \mathbf{J} - \mathbf{E} \cdot \frac{\mathrm{d}\mathbf{D}}{\mathrm{d}t} - \mathbf{H} \cdot \frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}$$

 \bullet Und schließlich mit den Maxwellschen Gleichungen für die Rotation von ${\bf E}$ und ${\bf H}$

$$abla \cdot \mathbf{S} = \mathbf{H} \cdot (
abla imes \mathbf{E}) - \mathbf{E} \cdot (
abla imes \mathbf{H}) =
abla \cdot (\mathbf{E} imes \mathbf{H})$$

Der Poynting-Vektor

• Wird nun die Divergenz auf beiden Seiten der Gleichung weggelassen, so ergibt sich für den *Poynting Vektor*

$$\mathbf{S}=\mathbf{E}\times\mathbf{H}$$

• Merke: Der *Poynting-Vektor* S beschreibt Betrag und Richtung der pro Flächenelement und Zeiteinheit abgestrahlten Feldenergie. Er hat die Einheit $J/s/m^2$ bzw. W/m^2 .

Der Poynting-Vektor bei harmonischer Zeitabhängigkeit (I)

 $\hfill \,$ Bei harmonischer Zeitabhängigkeit mit Kreisfrequenz ω und den reellen Feldvektoren

 $\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r})\cos(\omega t) \qquad \text{und} \qquad \mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})\cos(\omega t + \phi)$

ergibt sich der Poynting-Vektor zu

$$\mathbf{S}(\mathbf{r},t) = \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t) = [\mathbf{E}(\mathbf{r}) \times \mathbf{H}(\mathbf{r})] \cos(\omega t) \cos(\omega t + \phi)$$

• Mit den Rechenregeln der Trigonometrie lässt sich dies auch schreiben als

$$\mathbf{S}(\mathbf{r},t) = \frac{1}{2} \left[\mathbf{E}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) \right] \left[\underbrace{(1 + \cos(2\omega t))\cos(\phi)}_{\text{Wirkleistungsanteil}} - \underbrace{\sin(2\omega t)\sin(\phi)}_{\text{Blindleistungsanteil}} \right]$$

• Abhängig von der Phasenverschiebung ϕ ergibt sich ein Wirkleistungs- und ein Blindleistungsanteil.

- Normierte Darstellung des reellen instantanen Poynting-Vektors $S(\mathbf{r}, t)$ aufgeteilt in Wirkleistungs- und Blindleistungsanteil.
- Die gestrichelten Linien stellen die jeweiligen Mittelwerte dar.

Phasenverschiebung $\phi = 0$

- Normierte Darstellung des reellen instantanen Poynting-Vektors S(r, t) aufgeteilt in Wirkleistungs- und Blindleistungsanteil.
- Die gestrichelten Linien stellen die jeweiligen Mittelwerte dar.

Phasenverschiebung $\phi = \frac{\pi}{4}$

Institut für Photonik und Quantenelektronik

- Normierte Darstellung des reellen instantanen Poynting-Vektors S(r, t) aufgeteilt in Wirkleistungs- und Blindleistungsanteil.
- Die gestrichelten Linien stellen die jeweiligen Mittelwerte dar.

Phasenverschiebung $\phi = \frac{\pi}{2}$

Institut für Photonik und Quantenelektronik

Der Poynting-Vektor bei harmonischer Zeitabhängigkeit (I

- Sowohl die Wirkleistung als auch die Blindleistung oszillieren mit der Kreisfrequenz 2ω .
- $\hfill Im$ zeitlichen Mittel über eine Periode $T=2\pi/\omega$ bleibt allein die Wirkleistung

$$\bar{\mathbf{S}}(\mathbf{r}) = \frac{1}{T} \int_0^T \mathbf{S}(\mathbf{r}, t) \, \mathrm{d}t = \frac{1}{2} \left[\mathbf{E}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) \right]$$

Poynting Vektor bei harmonischer Zeitabhängigkeit (I)

Bei Feldern mit harmonischer Zeitabhängigkeit und somit

$$\mathbf{E}(\mathbf{r},t) = \Re \left\{ \mathbf{\underline{E}}(\mathbf{r}) e^{j \,\omega t} \right\} = \frac{1}{2} \left[\mathbf{\underline{E}}(\mathbf{r}) e^{j \,\omega t} + \mathbf{\underline{E}}^*(\mathbf{r}) e^{-j \,\omega t} \right]$$
$$\mathbf{H}(\mathbf{r},t) = \Re \left\{ \mathbf{\underline{H}}(\mathbf{r}) e^{j \,\omega t} \right\} = \frac{1}{2} \left[\mathbf{\underline{H}}(\mathbf{r}) e^{j \,\omega t} + \mathbf{\underline{H}}^*(\mathbf{r}) e^{-j \,\omega t} \right]$$

ergibt sich der Poynting Vektor zu

$$\begin{split} \mathbf{S}(\mathbf{r},t) &= \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t) \\ &= \frac{1}{4} \left[\mathbf{\underline{E}}(\mathbf{r}) \,\mathrm{e}^{\,\mathrm{j}\,\omega t} + \mathbf{\underline{E}}^{*}(\mathbf{r}) \,\mathrm{e}^{-\,\mathrm{j}\,\omega t} \right] \times \left[\mathbf{\underline{H}}(\mathbf{r}) \,\mathrm{e}^{\,\mathrm{j}\,\omega t} + \mathbf{\underline{H}}^{*}(\mathbf{r}) \,\mathrm{e}^{-\,\mathrm{j}\,\omega t} \right] \\ &= \frac{1}{4} \left[\mathbf{\underline{E}}(\mathbf{r}) \times \mathbf{\underline{H}}^{*}(\mathbf{r}) + \mathbf{\underline{E}}^{*}(\mathbf{r}) \times \mathbf{\underline{H}}(\mathbf{r}) \right] + \frac{1}{4} \left[\left(\mathbf{\underline{E}}(\mathbf{r}) \times \mathbf{\underline{H}}(\mathbf{r}) \right) \,\mathrm{e}^{\,\mathrm{j}\,2\omega t} + \left(\mathbf{\underline{E}}^{*}(\mathbf{r}) \times \mathbf{\underline{H}}^{*}(\mathbf{r}) \right) \,\mathrm{e}^{-\,\mathrm{j}\,2\omega t} \right] \\ &= \frac{1}{2} \Re \left\{ \mathbf{\underline{E}}(\mathbf{r}) \times \mathbf{\underline{H}}^{*}(\mathbf{r}) + \left(\mathbf{\underline{E}}(\mathbf{r}) \times \mathbf{\underline{H}}(\mathbf{r}) \right) \,\mathrm{e}^{\,\mathrm{j}\,2\omega t} \right\} \end{split}$$

Poynting-Vektor bei harmonischer Zeitabhängigkeit (II)

Im zeitlichen Mittel ergibt sich

$$\bar{\mathbf{S}}(\mathbf{r}) = \frac{1}{2} \Re \left\{ \bar{\mathbf{E}}(\mathbf{r}) \times \bar{\mathbf{H}}^*(\mathbf{r}) \right\}$$

Somit ist der komplexe Poynting Vektor definiert als

$$\underline{\mathbf{S}}(\mathbf{r}) = \frac{1}{2} \left[\underline{\mathbf{E}}(\mathbf{r}) \times \underline{\mathbf{H}}^*(\mathbf{r}) \right]$$

- Real- und Imaginärteil des komplexen Poynting-Vektors geben dabei den Wirk- und den Blindleistungsanteil an.
- Man beachte, dass bei der obigen Herleitung zwei komplexe Zeiger auf nichtlineare Weise verknüpft werden. Es kann daher nicht direkt mit den komplexen Amplituden gerechnet werden!

Poynting-Vektor bei harmonischer Zeitabhängigkeit (III)

bei

$$\bar{\mathbf{S}}(\mathbf{r}) = \frac{1}{2} \Re \left\{ \bar{\mathbf{E}}(\mathbf{r}) \times \bar{\mathbf{H}}^*(\mathbf{r}) \right\}$$

Somit ist der komplexe Poynting Vektor definiert als

$$\mathbf{\bar{S}}(\mathbf{r}) = rac{1}{2} \left[\mathbf{\bar{E}}(\mathbf{r}) \times \mathbf{\bar{H}}^{*}(\mathbf{r})
ight]$$

- Real- und Imaginärteil des komplexen Poynting-Vektors geben dabei den Wirk- und den Blindleistungsanteil an.
- Man beachte, dass bei der obigen Herleitung zwei komplexe Zeiger auf nichtlineare Weise verknüpft werden. Es kann daher nicht direkt mit den komplexen Amplituden gerechnet werden!

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Wiederholung

2. Zeitharmonische ebene Wellen

3. Der Poynting-Vektor

4. Was Sie gelernt haben sollten

Was Sie gelernt haben sollten

- Wieso die Maxwellschen Gleichungen ohne explizite Zeitabhängigkeit und nur mit der komplexen Amplitude formuliert werden können.
- Was der Zusammenhang der allgemeinen Wellengleichungen und der Helmholtz-Gleichung unter Berücksichtigung der komplexen Zeigerschreibweise ist.
- Wie die abgestrahlte Feldenergie durch den Poynting-Vektor beschrieben wird.
- Wie zeitharmonische ebene Wellen mit der komplexen Zeigerschreibweise und der komplexen Wellenzahl beschrieben werden können.