

Vorlesung 10: Parallelplattenleitung

Elektromagnetische Wellen | Wintersemester 2021/22

Prof. Dr.-Ing. Sebastian Randel | 15. Dezember 2021

Vorlesungsinhalte

1. Reflexion am idealen Leiter

2. Parallelplattenleitung

3. Was Sie gelernt haben sollten

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Reflexion am idealen Leiter

2. Parallelplattenleitung

3. Was Sie gelernt haben sollten

Wdh.: Stetigkeit der tangentialen Feldkomponenten (I)

- Zur Herleitung der Stetigkeitsbedingungen der Tangentialkomponenten an einem Grenzübergang zwischen zwei Medien betrachten wir zunächst eine Fläche F, deren Normalenvektor parallel zur Grenzfläche ist.
- Senkrecht zur Grenzfläche betrage die Seitenlänge h, parallel zur Grenzfläche betrage sei die Ausdehnung Δs . Im Folgenden betrachten wir den Fall $h \rightarrow 0$.

Wdh.: Stetigkeit der tangentialen Feldkomponenten (II)

• Gemäß obiger Abbildung folgt aus dem Durchflutungs- bzw. dem Induktionsgesetz, dass

$$\oint_{s} \mathbf{H} \cdot d\mathbf{s} = \mathbf{H}_{1} \cdot \Delta \mathbf{s}_{1} + \mathbf{H}_{2} \cdot \Delta \mathbf{s}_{2} = \int_{F} \mathbf{J} \cdot d\mathbf{F} + \int_{F} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{F} = \int_{F} \mathbf{J} \cdot d\mathbf{F} = i' \Delta s$$
$$\oint_{s} \mathbf{E} \cdot d\mathbf{s} = \mathbf{E}_{1} \cdot \Delta \mathbf{s}_{1} + \mathbf{E}_{2} \cdot \Delta \mathbf{s}_{2} = -\int_{F} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{F} = 0$$

- Die Verschiebungsstromdichte $\partial \mathbf{D}/\partial t$ und die zeitliche Änderung der magnetischen Flussdichte $\partial \mathbf{B}/\partial t$ müssen stets endlich sein. Wegen $h \to 0$ verschwinden somit ihre Flächenintegrale.
- Das Flächenintegral über die Stromdichte **J** kann jedoch auch für infinitesimal kleines h einen endlichen Wert annehmen. D.h. es kann ein Oberflächenstrom $i'\Delta s$ mit dem Strombelag i' (Einheit $\frac{A}{m}$) fließen.
- Dies hat zur Folge, dass

$$H_{t,1} - H_{t,2} = i'$$

 $E_{t,1} - E_{t,2} = 0$

wobei $H_{t,1}$, $E_{t,1}$, $H_{t,2}$ und $E_{t,2}$ die tangentialen Feldkomponenten an der Grenzfläche sind.

Wdh.: Stetigkeit der normalen Feldkomponenten (I)

- Zur Herleitung der Stetigkeitsbedingungen der Normalkomponenten an einem Grenzübergang zwischen zwei Medien betrachten wir zunächst einen Zylinder mit Volumen V dessen Stirnflächennormalen parallel zur Grenzflächennormalen sind.
- Die Höhe des Zylinders sei h und die beiden Stirnflächen haben jeweils einen Flächeninhalt ΔF .
- Im Folgenden betrachten wir den Fall $h \rightarrow 0$.

Wdh.: Stetigkeit der normalen Feldkomponenten (II)

• Gemäß der Abbildung folgt aus dem Gaußschen Gesetz sowie der Quellenfreiheit des Magnetfeldes, dass

$$\oint_{O} \mathbf{D} \cdot d\mathbf{F} = \mathbf{D}_{1} \cdot \Delta \mathbf{F}_{1} + \mathbf{D}_{2} \cdot \Delta \mathbf{F}_{2} = \int_{V} \rho \, dV = \sigma \Delta F$$
$$\oint_{O} \mathbf{B} \cdot d\mathbf{F} = \mathbf{B}_{1} \cdot \Delta \mathbf{F}_{1} + \mathbf{B}_{2} \cdot \Delta \mathbf{F}_{2} = 0,$$

wobei σ die Flächenladungsdichte (Einheit $\frac{As}{m^2}$) ist.

Dies hat zur Folge, dass

$$D_{\mathsf{n},1} - D_{\mathsf{n},2} = \sigma$$
$$B_{\mathsf{n},1} - B_{\mathsf{n},2} = 0$$

wobei $D_{n,1}$, $B_{n,1}$, $D_{n,2}$ und $B_{n,2}$ die normalen Feldkomponenten an der Grenzfläche sind.

Karlsruher Institut für Technologie

Wdh.: Randbedingungen

• Ist Medium 2 ideal leitend (d.h. Leitfähigkeit $\kappa_2 \rightarrow \infty$ bzw. Relaxationszeit $T_r \rightarrow 0$), so verschwinden darin die Felder und die zuvor beschriebenen Stetigkeitsbedingungen werden zu

$$H_{\mathrm{t},1}=i'$$
 , $E_{\mathrm{t},1}=0$, $D_{\mathrm{n},1}=\sigma$, $B_{\mathrm{n},1}=0$

• In diesem Fall werden die Stetigkeitsbedingungen auch als Randbedingungen bezeichnet.

Reflexions- & Transmissionsfaktor am idealen Leiter

- Eine elektromagnetische Welle breite sich in einem Medium mit Wellenwiderstand Z
 ₁ aus und treffe unter einem Winkel α₁ auf die Grenzfläche zu einem idealen Leiter mit Wellenwiderstand Z
 ₂ (κ₂ → ∞).
- Mit dem komplexen Wellenwiderstand

$$\underline{Z}_2 = \sqrt{\frac{\mu_2}{\underline{\varepsilon}_2}} = \sqrt{\frac{\mu_2}{\varepsilon_2 - j \kappa_2/\omega}} = \sqrt{\mu_2 \frac{\varepsilon_2 + j \kappa_2/\omega}{\varepsilon_2^2 + \kappa_2^2/\omega^2}} \xrightarrow{\kappa_2 \to \infty} 0,$$

können wir dann die Reflexions- und Transmissionsfaktoren am idealen Leiter für senkrechte und parallele Polarisation schreiben als

$$\underline{r}_{\mathsf{s}} = \frac{\underline{Z}_2 \cos(\alpha_1) - \underline{Z}_1 \cos(\alpha_2)}{\underline{Z}_2 \cos(\alpha_1) + \underline{Z}_1 \cos(\alpha_2)} \xrightarrow{\kappa \to \infty} -1 \qquad \underline{t}_{\mathsf{s}} = \frac{2\underline{Z}_2 \cos(\alpha_1)}{\underline{Z}_2 \cos(\alpha_1) + \underline{Z}_1 \cos(\alpha_2)} \xrightarrow{\kappa \to \infty} 0$$

$$\underline{r}_{\mathsf{p}} = \frac{\underline{Z}_1 \cos(\alpha_1) - \underline{Z}_2 \cos(\alpha_2)}{\underline{Z}_1 \cos(\alpha_1) + \underline{Z}_2 \cos(\alpha_2)} \xrightarrow{\kappa \to \infty} 1 \qquad \underline{t}_{\mathsf{p}} = \frac{2\underline{Z}_2 \cos(\alpha_1)}{\underline{Z}_1 \cos(\alpha_1) + \underline{Z}_2 \cos(\alpha_2)} \xrightarrow{\kappa \to \infty} 0 .$$

Reflexion am idealen Leiter (I)

 Betrachten wir nun eine einfallende Welle, welche unter einem Winkel α auf eine in der xz-Ebene liegende Grenzfläche zwischen Vakuum und einem ideal leitenden Medium trifft und reflektiert wird. Die Einfallsebene sei die yz-Ebene.

• Für die Wellenvektoren gilt mit $k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$

$$\mathbf{k}_{\mathsf{e}} = k_0 \, \mathbf{e}_{\mathsf{e}} = k_0 \left(-\cos\alpha \, \mathbf{e}_y + \sin\alpha \, \mathbf{e}_z \right) \quad \mathsf{und} \quad \mathbf{k}_{\mathsf{r}} = k_0 \, \mathbf{e}_{\mathsf{r}} = k_0 \left(\cos\alpha \, \mathbf{e}_y + \sin\alpha \, \mathbf{e}_z \right)$$

Reflexion am idealen Leiter (II)

• Die einfallende Welle sei harmonisch und eben, d.h. wir erhalten mit dem Wellenwiderstand des freien Raumes Z_0

$$\begin{split} \mathbf{\underline{F}}_{\mathbf{e}}(\mathbf{r},t) &= \mathbf{\underline{F}}_{0,\mathbf{e}} \, \mathrm{e}^{\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{e}}\mathbf{r})} \quad \text{und} \quad \mathbf{\underline{H}}_{\mathbf{e}}(\mathbf{r},t) = \mathbf{\underline{H}}_{0,\mathbf{e}} \, \mathrm{e}^{\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{e}}\mathbf{r})} = \frac{1}{Z_0} \mathbf{e}_{\mathbf{e}} \times \mathbf{\underline{F}}_{\mathbf{e}}(\mathbf{r},t) \\ \mathbf{\underline{F}}_{\mathbf{r}}(\mathbf{r},t) &= \mathbf{\underline{F}}_{0,\mathbf{r}} \, \mathrm{e}^{\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{r}}\mathbf{r})} \quad \text{und} \quad \mathbf{\underline{H}}_{\mathbf{r}}(\mathbf{r},t) = \mathbf{\underline{H}}_{0,\mathbf{r}} \, \mathrm{e}^{\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{r}}\mathbf{r})} = \frac{1}{Z_0} \mathbf{e}_{\mathbf{r}} \times \mathbf{\underline{F}}_{\mathbf{r}}(\mathbf{r},t) \end{split}$$

Karlsruher Institut für Technologie

Senkrechte und parallele Polarisation

 Bezogen auf die Einfallsebene (hier die yz-Ebene) können wir die einfallende Welle aufteilen in ein senkrecht polarisiertes und ein parallel polarisiertes Feld gemäß

$$\underline{\mathbf{E}}_{\mathsf{e}}(\mathbf{r},t) = \underline{\mathbf{E}}_{\mathsf{e}}^{\parallel}(\mathbf{r},t) + \underline{\mathbf{E}}_{\mathsf{e}}^{\perp}(\mathbf{r},t) \quad \text{und} \quad \underline{\mathbf{E}}_{\mathsf{r}}(\mathbf{r},t) = \underline{\mathbf{E}}_{\mathsf{r}}^{\parallel}(\mathbf{r},t) + \underline{\mathbf{E}}_{\mathsf{r}}^{\perp}(\mathbf{r},t)$$

Reflexion am idealen Leiter: Parallele Polarisation (I)

• Mit dem Reflexionsfaktor der parallelen Polarisation $\underline{r}_p = 1$ erhalten wir für das einfallende und reflektierte elektrische Feld

$$\mathbf{\underline{E}}_{0,\mathbf{e}}^{\parallel} = \underline{\underline{F}}_{0}^{\parallel} \, \mathbf{e}_{\mathbf{p},\mathbf{e}} = \underline{\underline{F}}_{0}^{\parallel} \left(\sin \alpha \, \mathbf{e}_{y} + \cos \alpha \, \mathbf{e}_{z} \right) \quad \text{und} \quad \mathbf{\underline{F}}_{0,\mathbf{r}}^{\parallel} = \underline{\underline{F}}_{0}^{\parallel} \, \mathbf{e}_{\mathbf{p},\mathbf{r}} = \underline{\underline{F}}_{0}^{\parallel} \left(\sin \alpha \, \mathbf{e}_{y} - \cos \alpha \, \mathbf{e}_{z} \right)$$

• Dementsprechend zeigt das H-Feld in Richtung $e_e \times e_{p,e} = e_r \times e_{p,r} = -e_x$ und lässt sich ausdrücken als

$$\underline{\mathbf{H}}_{0,\mathbf{e}}^{\parallel} = -\frac{\underline{E}_{0}^{\parallel}}{Z_{0}} \, \mathrm{e}^{\,\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{e}}\mathbf{e})} \, \mathbf{e}_{x} \quad \mathrm{und} \quad \underline{\mathbf{H}}_{0,\mathbf{r}}^{\parallel} = -\frac{\underline{E}_{0}^{\parallel}}{Z_{0}} \, \mathrm{e}^{\,\mathrm{j}(\omega t - \mathbf{k}_{\mathbf{r}}\mathbf{r})} \, \mathbf{e}_{x} \, .$$

Reflexion am idealen Leiter: Parallele Polarisation (II)

Für die Überlagerung von einfallender und reflektierter Welle erhalten wir

$$\underline{\mathbf{E}}^{\parallel}(\mathbf{r},t) = \ \underline{\mathbf{E}}_{\mathbf{e}}^{\parallel}(\mathbf{r},t) + \underline{\mathbf{E}}_{\mathbf{r}}^{\parallel}(\mathbf{r},t) = \underline{E}_{y}^{\parallel}(\mathbf{r},t) \ \mathbf{e}_{y} + \underline{E}_{z}^{\parallel}(\mathbf{r},t) \ \mathbf{e}_{z}$$

mit den Komponenten wobei $\mathbf{k}_{e} = k_0 \left(-\cos \alpha \, \mathbf{e}_y + \sin \alpha \, \mathbf{e}_z\right)$ und $\mathbf{k}_{r} = k_0 \left(\cos \alpha \, \mathbf{e}_y + \sin \alpha \, \mathbf{e}_z\right)$

$$\begin{split} E_{y}^{\parallel}(\mathbf{r},t) &= E_{0}^{\parallel} \sin \alpha \left(e^{j(\omega t - \underline{\mathbf{k}}_{e} \cdot \mathbf{r})} + e^{j(\omega t - \underline{\mathbf{k}}_{r} \cdot \mathbf{r})} \right) \\ &= E_{0}^{\parallel} \sin \alpha \left(e^{j k_{0} \cos \alpha y} + e^{-j k_{0} \cos \alpha y} \right) e^{j(\omega t - k_{0} \sin \alpha z)} \\ &= 2E_{0}^{\parallel} \sin \alpha \cos \left(k_{0} \cos \alpha y \right) e^{j(\omega t - k_{0} \sin \alpha z)} \end{split}$$

und

$$\begin{split} E_{z}^{\parallel}(\mathbf{r},t) &= E_{0}^{\parallel} \cos \alpha \left(e^{j(\omega t - \underline{\mathbf{k}}_{e} \cdot \mathbf{r})} - e^{j(\omega t - \underline{\mathbf{k}}_{r} \cdot \mathbf{r})} \right) \\ &= E_{0}^{\parallel} \cos \alpha \left(e^{j \, k_{0} \cos \alpha \, y} - e^{-j \, k_{0} \cos \alpha \, y} \right) e^{j(\omega t - k_{0} \sin \alpha \, z)} \\ &= j \, 2 E_{0}^{\parallel} \cos \alpha \sin \left(k_{0} \cos \alpha \, y \right) e^{j(\omega t - k_{0} \sin \alpha \, z)} \end{split}$$

Reflexion am idealen Leiter: Senkrechte Polarisation

Das elektrische Feld steht jetzt senkrecht auf der Einfallsebene und wir erhalten mit dem Reflexionsfaktor $\underline{r}_{\rm s}=-1$

$$\underline{\mathbf{E}}_{0,\mathsf{e}}^{\perp} = \underline{E}_0^{\perp} \, \mathbf{e}_{\mathsf{s},\mathsf{e}} = \underline{E}_0^{\perp} \, \mathbf{e}_x \quad \text{und} \quad \underline{\mathbf{E}}_{0,\mathsf{r}}^{\perp} = \underline{E}_0^{\perp} \, \mathbf{e}_{\mathsf{s},\mathsf{r}} = -\underline{E}_0^{\perp} \, \mathbf{e}_x \,,$$

weshalb wir folgende Ausdrücke für das magnetische Feld erhalten

$$\underline{\mathbf{H}}_{0,\mathbf{e}}^{\perp} = \frac{\underline{E}_{0}^{\perp}}{Z_{0}} \left(\sin \alpha \, \mathbf{e}_{y} + \cos \alpha \, \mathbf{e}_{z} \right) \quad \text{und} \quad \underline{\mathbf{H}}_{0,\mathbf{r}}^{\perp} = \frac{\underline{E}_{0}^{\perp}}{Z_{0}} \left(-\sin \alpha \, \mathbf{e}_{y} + \cos \alpha \, \mathbf{e}_{z} \right) \; .$$

• Für die Überlagerung von einfallender und reflektierter Welle erhalten wir

$$\underline{\mathbf{E}}^{\perp}(\mathbf{r},t) = \underline{\mathbf{E}}_{\mathbf{e}}^{\perp}(\mathbf{r},t) + \underline{\mathbf{E}}_{\mathbf{r}}^{\perp}(\mathbf{r},t) = \underline{E}_{x}^{\perp}(\mathbf{r},t) \, \mathbf{e}_{x}$$

mit der Komponente

$$\underline{E}_{x}^{\perp}(\mathbf{r},t) = \underline{E}_{0}^{\perp} \left(e^{j(\omega t - \underline{\mathbf{k}}_{e} \cdot \mathbf{r})} - e^{j(\omega t - \underline{\mathbf{k}}_{r} \cdot \mathbf{r})} \right)$$
$$= j 2\underline{E}_{0}^{\perp} \sin\left(k_{0} \cos \alpha y\right) e^{j(\omega t - k_{0} \sin \alpha z)} .$$

Wellenausbreitung bei Reflexion am idealen Leiter

• Die Interpretation der obigen Ausdrücke lässt sich vereinfachen, indem wir die Wellenzahlen

$$k_y = k_0 \cos \alpha$$
 und $k_z = k_0 \sin \alpha$

einführen. Es gilt somit $k_0^2 = k_y^2 + k_z^2$.

 \hfill Wir erhalten dementsprechend für den Halbraum $y\geq 0$ im Fall paralleler Polarisation

$$\underline{\mathbf{E}}^{\parallel}(\mathbf{r},t) = \underline{\mathbf{E}}_{y}^{\parallel}(\mathbf{r},t)\,\mathbf{e}_{y} + \underline{\mathbf{E}}_{z}^{\parallel}(\mathbf{r},t)\,\mathbf{e}_{z} = \left(2\underline{E}_{0}^{\parallel}\frac{k_{z}}{k_{0}}\cos\left(k_{y}\,y\right)\,\mathbf{e}_{y} + j\,2\underline{E}_{0}^{\parallel}\frac{k_{y}}{k_{0}}\sin\left(k_{y}\,y\right)\,\mathbf{e}_{z}\right)\mathrm{e}^{\mathrm{j}\left(\omega t - k_{z}z\right)}$$

und im Fall senkrechter Polarisation

$$\mathbf{\underline{E}}^{\perp}(\mathbf{r},t) = \mathbf{\underline{E}}_{x}^{\perp}(\mathbf{r},t) \mathbf{e}_{x} = j 2 \underline{\underline{E}}_{0}^{\perp} \sin\left(k_{y} \, y\right) e^{j\left(\omega t - k_{z} z\right)} \mathbf{e}_{x} \,.$$

Wir beobachten also unabhängig von der Polarisation eine Welle, welche sich in z-Richtung ausbreitet und deren Amplitude von y abhängt.

Sonderfälle der Wellenausbreitung am idealen Leiter

- Im Fall $\alpha = 0^{\circ}$ trifft die einfallende Welle senkrecht auf die Grenzfläche. Wie erhalten $k_y = k_0$ und $k_z = 0$. Die reflektierte Welle breitet sich also in entgegengesetzter Richtung zur einfallenden Welle aus.
- Durch die Überlagerung der einfallenden und der reflektierten Welle erhalten wir eine stehende Welle.
- Im Fall $\alpha = 90^{\circ}$ kommt es zu keiner Reflexion und die einfallende Welle breitet sich ungestört im Halbraum $y \ge 0$ aus. Es gilt $k_y = 0$ und $k_z = k_0$.

Darstellung mittels Wellenlängen

Die Welle kann auch mithilfe der Wellenlängen

$$\lambda_y = \frac{2\pi}{k_y} = \frac{\lambda_0}{\cos \alpha}$$
 und $\lambda_z = \frac{2\pi}{k_z} = \frac{\lambda_0}{\sin \alpha}$

beschrieben werden, wobei $\lambda_0 = \frac{2\pi}{k_0} = \frac{2\pi c_0}{\omega}$ die Wellenlänge im Vakuum ist und $\alpha \in (0, \pi/2)$.

- Die beiden Wellenlängen erfüllen also die Beziehung $\frac{1}{\lambda_y^2} + \frac{1}{\lambda_z^2} = \frac{1}{\lambda_0^2}$, wobei $\lambda_y, \lambda_z \ge \lambda_0$.
- Damit lassen sich die komplexen Zeiger der elektrischen Feldstärkevektoren für die parallele bzw. senkrechte Polarisation schreiben als

$$\begin{split} \mathbf{\bar{E}}^{\parallel}(\mathbf{r},t) &= \underline{\bar{E}}_{0}^{\parallel} \left[2 \frac{\lambda_{0}}{\lambda_{z}} \cos\left(\frac{2\pi y}{\lambda_{y}}\right) \, \mathbf{e}_{y} + j \, 2 \frac{\lambda_{0}}{\lambda_{y}} \sin\left(\frac{2\pi y}{\lambda_{y}}\right) \, \mathbf{e}_{z} \right] \mathrm{e}^{\mathrm{j}\left(\omega t - \frac{2\pi z}{\lambda_{z}}\right)} \\ \mathbf{\bar{E}}^{\perp}(\mathbf{r},t) &= \underline{\bar{E}}_{0}^{\perp} \left[\mathrm{j} \, 2 \sin\left(\frac{2\pi y}{\lambda_{y}}\right) \, \mathbf{e}_{x} \right] \mathrm{e}^{\mathrm{j}\left(\omega t - \frac{2\pi z}{\lambda_{z}}\right)} \, . \end{split}$$

Reellwertige Feldkomponenten

• Die reellwertigen E-Feldkomponenten erhalten wir mit $\underline{E}_0 = E_0 e^{j \varphi_0}$ als Realteil der komplexen Zeiger

$$\mathbf{E}^{\parallel}(\mathbf{r},t) = \Re\left\{\mathbf{\bar{E}}^{\parallel}(\mathbf{r},t)\right\} = E_{0}^{\parallel} \begin{pmatrix} 0 \\ 2\frac{\lambda_{0}}{\lambda_{z}}\cos\left(\frac{2\pi y}{\lambda_{y}}\right)\cos\left(\varphi_{0}+\omega t-\frac{2\pi z}{\lambda_{z}}\right) \\ 2\frac{\lambda_{0}}{\lambda_{y}}\sin\left(\frac{2\pi y}{\lambda_{y}}\right)\sin\left(\varphi_{0}+\omega t-\frac{2\pi z}{\lambda_{z}}\right) \end{pmatrix}$$
$$\mathbf{E}^{\perp}(\mathbf{r},t) = \Re\left\{\mathbf{\bar{E}}^{\perp}(\mathbf{r},t)\right\} = E_{0}^{\perp} \begin{pmatrix} 2\sin\left(\frac{2\pi y}{\lambda_{y}}\right)\sin\left(\varphi_{0}+\omega t-\frac{2\pi z}{\lambda_{z}}\right) \\ 0 \\ 0 \end{pmatrix}.$$

Da im idealen Leiter kein elektrisches Feld existieren kann, verschwinden die tangentialen
 E-Feldkomponenten (hier E_z und E_x) auf der Grenzfläche y = 0 gemäß den Stetigkeitsbedingungen der Maxwellschen Gleichungen.

Amplitudenverteilung von E_u^{\parallel}

 Die Abbildung zeigt die normierte *y*-Komponente E^{||}_y/E^{||}₀ des *parallel polarisierten* elektrischen Feldstärkevektors zum Zeitpunkt t = 0 für φ₀ = 0.

Amplitudenverteilung von E_z^{\parallel}

 Die Abbildung zeigt die normierte z-Komponente E^{||}_z/E^{||}₀ des parallel polarisierten elektrischen Feldstärkevektors zum Zeitpunkt t = 0 für φ₀ = 0.

Amplitudenverteilung von E_x^{\perp}

• Die Abbildung zeigt die normierte x-Komponente E_x^{\perp}/E_0^{\perp} des senkrecht polarisierten elektrischen Feldstärkevektors zum Zeitpunkt t = 0 für $\varphi_0 = 0$.

Dispersionsrelation

• Da k_z reell ist, verläuft die Wellenausbreitung verlustlos. Wir erhalten also für die Phasenkonstante in z-Richtung

$$\beta_z = k_z = \sqrt{k_0^2 - k_y^2} = \sqrt{\frac{\omega^2}{c_0^2} - k_y^2}.$$

 $\hfill Aufgelöst nach <math display="inline">\omega$ ergibt sich daraus die Dispersionsrelation

$$\omega(\beta_z) = c_0 \sqrt{\beta_z^2 + k_y^2} \,,$$

aus welcher im Folgenden die Phasen- und Gruppengeschwindigkeit bestimmt werden kann.

Phasen- und Gruppengeschwindigkeit (I)

• Die Phasengeschwindigkeit in z-Richtung ergibt sich zu

$$v_{\mathsf{ph},z} = \frac{\omega}{\beta_z} = \frac{\omega}{k_0 \sin \alpha} = \frac{c_0}{\sin \alpha} \ge c_0$$

 $\hfill und die Gruppengeschwindigkeit in <math display="inline">z\mbox{-Richtung}$ aus der Dispersionsrelation zu

$$v_{\mathrm{gr},z} = \frac{\mathrm{d}\,\omega}{\mathrm{d}\,\beta_z} = \frac{\beta_z c_0}{\sqrt{\beta_z^2 + k_y^2}} = \frac{\beta_z c_0}{k_0} = \frac{\beta_z c_0^2}{\omega} = \frac{c_0^2}{v_{\mathrm{ph},z}} = c_0 \sin\alpha \le c_0$$

Damit ergibt sich für die Reflexion am idealen Leiter die Beziehung

$$v_{\mathsf{ph},z}v_{\mathsf{gr},z} = c_0^2$$

d.h. dass das Produnkt von Phasen- und Gruppengeschindigkeit gleich dem Quadrat der Lichtgeschwindigkeit ist.

Phasen- und Gruppengeschwindigkeit (II)

 Die Abbildung zeigt die normierte Phasen- und Gruppengeschwindigkeit einer ebenen Welle bei Reflexion am idealen Leiter als Funktion des Einfallswinkels α.

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Reflexion am idealen Leiter

2. Parallelplattenleitung

3. Was Sie gelernt haben sollten

Karlsruher Institut für Technologie

Parallelplattenleitung

- Gemäß der Randbedingungen verschwindet die tangentiale E_z -Komponente auf der Grenzfläche, d.h. das elektrische Feld steht senkrecht.
- In den xz-Ebenen bei $y = n \frac{\lambda_y}{2}$ mit n = 1, 2, 3, ... verschwindet die \underline{E}_z Komponente ebenfalls.
- Man kann in diesen Ebenen also ideal leitende Platten im Abstand $d = n \frac{\lambda_y}{2}$ einziehen, ohne dass sich das Feld zwischen den Platten verändern würde.
- Eine solche Anordnung heißt *Parallelplattenleiter*.

Moden im Parallelplattenleiter (I)

- Für einen gegebenen Plattenabstand *d* beobachten wir im Parallelplattenleiter abhängig von der Frequenz verschiedene Feldbilder.
- Diese Feldbilder unterscheiden sich in der Anzahl von Nullstellen. Je größer *n*, desto mehr Nullstellen existieren zwischen den Platten.
- Die verschiedenen Feldbilder bezeichnen wir als Moden.
- Das parallel bzw. senkrecht polarisierte elektrische Feld können wir dann schreiben als

$$\underline{\mathbf{E}}^{\parallel}(\mathbf{r},t) = \underline{E}_{0}^{\parallel} \begin{pmatrix} 0\\ 2\frac{\lambda_{0}}{\lambda_{z}}\cos\left(\frac{n\pi y}{d}\right)\\ j 2\frac{\lambda_{0}}{\lambda_{y}}\sin\left(\frac{n\pi y}{d}\right) \end{pmatrix} e^{j\left(\omega t - \frac{2\pi z}{\lambda_{z}}\right)} \quad \text{und} \quad \underline{\mathbf{E}}^{\perp}(\mathbf{r},t) = \underline{E}_{0}^{\perp} \begin{pmatrix} j 2\sin\left(\frac{n\pi y}{d}\right)\\ 0\\ 0 \end{pmatrix} e^{j\left(\omega t - \frac{2\pi z}{\lambda_{z}}\right)}$$

Moden im Parallelplattenleiter (II)

• Die Abbildungen zeigen die Amplitudenverteilungen von $E_x^{\perp} = \Re\{\underline{E}_x^{\perp}\}$ des senkrecht polarisierten elektrischen Felds für $t = 0, z = 0, \varphi_0 = 0$ und verschiedene Werte von n.

Dispersionsrelation der Parallelplattenleitung (I)

 $\hfill\blacksquare$ Ist der Plattenabstand d fest vorgegeben, so folgt für gegebenes n

$$d=n\lambda_y/2$$
 bzw. $k_y=rac{2\pi}{\lambda_y}=nrac{\pi}{d}$

Damit ergibt sich für die Ausbreitungskonstante bzw. für die Wellenlänge in Ausbreitungsrichtung

$$k_z = k_0 \sqrt{1 - \left(\frac{k_y}{k_0}
ight)^2}$$
 bzw. $\lambda_z = \frac{2\pi}{k_z} = \frac{\lambda_0}{\sqrt{1 - \left(\frac{n\lambda_0}{2d}
ight)^2}}$

Grenzfrequenz im Parallelplattenleiter

- $\hfill Wird die Ausbreitungskonstante <math display="inline">k_z$ zu null, kann sich keine Welle mehr ausbreiten.
- Daher bezeichnen wir die Frequenz, bei der k_z = 0 gilt, als *Grenzfrequenz* f_c ("cut-off frequency").
 Dementsprechend gilt

$$1 - \left(\frac{k_y}{k_0}\right)^2 = 0 \quad \iff \quad k_y = k_0 \quad \iff \quad \frac{n\pi}{d} = \frac{2\pi f_{\mathsf{c}}}{c_0} \quad \iff \quad f_{\mathsf{c}} = \frac{nc_0}{2d}$$

• Nun können wir mit $\omega_{\rm c}=2\pi f_{\rm c}$ die Ausbreitungskonstante ausdrücken durch

$$k_z = k_0 \sqrt{1 - \left(\frac{\omega_{\rm c}}{\omega}\right)^2} \,. \label{eq:kz}$$

• Für Frequenzen $f < f_c$ wird k_z imaginär, d.h. die Welle wird in z-Richtung exponentiell gedämpft. Eine ungedämpfte Wellenausbreitung ist also für gegebenes n nur bei Frequenzen $f \ge f_{c,n}$ möglich.

Dispersionsrelation der Parallelplattenleitung (II)

- Äquivalent zu der Grenzfrequenz definieren wir die *Grenzwellenlänge* $\lambda_{c} = \frac{c_{0}}{f_{c}} = \frac{2d}{n}$.
- Die Darstellung unten zeigt die normierte Wellenlänge in Ausbreitungsrichtung λ_z/d .
- Da $\lambda_z \propto \frac{1}{k_z}$ gilt, sehen wir die Polstellen bei $\lambda \to \lambda_c$, welche durch die gestrichelten Linien hervorgehoben sind.

Phasen- & Gruppengeschwindigkeit im Parallelplattenleiter

• Mit $\beta_z = k_z$ gilt für die Phasen- und Gruppengeschwindigkeit im Parallelplattenleiter

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Reflexion am idealen Leiter

2. Parallelplattenleitung

3. Was Sie gelernt haben sollten

Was Sie gelernt haben sollten

- Wie sich elektromagnetische Wellen an Grenzflächen, insbesondere an idealen Leitern verhalten.
- Dass die Überlagerung von einfallender und am Leiter reflektierter Welle in einer senkrecht zur Grenzfläche stehenden Welle resultiert.
- Wie die Phasen- und Gruppengeschwindigkeit der, durch die Überlagerung resultierenden Welle, mit dem Einfallswinkel zusammenhängt.
- Wie das Funktionsprinzip des Parallelplattenleiters von der Betrachtung des Welleneinfalls auf den idealen Leiter abgeleitet werden kann.
- Was eine Mode ist und unter welchen Bedingungen sich die einzelnen Moden im Parallelplattenleiter ausbreiten können.
- Die Bedeutung der Grenzfrequenz für die einzelnen Moden des Parallelplattenleiters.
- Wie sich die Phasen- und Gruppengeschwindigkeit im Parallelplattenleiter verhalten.