

Vorlesung 12: Rundhohlleiter

Elektromagnetische Wellen | Wintersemester 2021/22

Prof. Dr.-Ing. Sebastian Randel | 8. März 2022

Vorlesungsinhalte

1. Zylindersymmetrische Kanalwellenleiter

2. Rundhohlleiter

3. Was Sie gelernt haben sollten

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Zylindersymmetrische Kanalwellenleiter

2. Rundhohlleiter

3. Was Sie gelernt haben sollten

Zylindersymmetrische Kanalwellenleiter

- Im Folgenden wollen wir die Wellenausbreitung in zylindersymmetrischen Kanalwellenleitern betrachten, deren Querschnitt entlang der Ausbreitungsrichtung z konstant ist.
- Einfachheitshalber beschränken wir uns auf Wellenleiter mit in radialer Richtung stückweise homogenen Medien. Entlang der φ -Koordinate seien die Medien stets homogen, d.h. sie sind zylindersymmetrisch.
- \bullet Zudem sei der Wellenleiter quellenfrei, d.h. $\rho=0$ und es fließen keine freien Ströme.
- An den Grenzflächen müssen jeweils die Rand- bzw. Stetigkeitsbedingungen erfüllt sein.
- Die Abbildung zeigt ein Beispiel eines zylindrischen Kanalwellenleiters, der sich aus zwei homogenen Medien zusammensetzt.
- Beispiele sind Rundhohlleiter und Glasfasern.

Geführte E- und H-Wellen (I)

- Im Folgenden wollen wir geführte E- und H-Wellen betrachten, welche sich mit invarianter transversaler Feldverteilung $\underline{F}^E(\rho, \varphi)$ bzw. $\underline{F}^H(\rho, \varphi)$ mit der Ausbreitungskonstanten \underline{k}_z in z-Richtung ausbreiten.
- Für die longitudinalen Feldkomponenten in Zylinderkoordinaten setzen wir an:

$$\begin{split} \underline{E}_{z}(\rho,\varphi,z) &= \underline{E}_{0}\underline{F}^{E}(\rho,\varphi) \,\mathrm{e}^{-\,\mathrm{j}\,\underline{k}_{z}z} \\ \underline{H}_{z}(\rho,\varphi,z) &= \underline{H}_{0}\underline{F}^{H}(\rho,\varphi) \,\mathrm{e}^{-\,\mathrm{j}\,\underline{k}_{z}z} \end{split}$$

 In einem radialen Abschnitt mit homogenem Medium und Wellenzahl <u>k</u> müssen die longitudinalen Feldkomponenten die skalaren Helmholtzgleichungen

$$\Delta \underline{E}_z + \underline{k}^2 \underline{E}_z = 0$$
$$\Delta \underline{H}_z + \underline{k}^2 \underline{H}_z = 0$$

unter gegebenen Rand- bzw. Stetigkeitsbedingungen erfüllen.

Geführte E- und H-Wellen (II)

- Im allgemeinen Fall sind die longitudinalen Feldkomponenten <u>E</u>_z und <u>H</u>_z aufgrund der Stetigkeitsbedingungen an der Grenzfläche verkoppelt. Hohlleiter mit ideal leitenden Wänden bilden dabei eine Ausnahme.
- Wie schon zuvor für kartesische Koordinaten gezeigt, lassen sich die transversalen Feldkomponenten aus E_z und H_z ableiten gemäß

$$\begin{split} E_{\rho} &= E_{\rho}^{E} + E_{\rho}^{H} = -j \frac{\underline{k}_{z}}{\underline{k}^{2} - \underline{k}_{z}^{2}} \left(\frac{\partial \underline{E}_{z}}{\partial \rho} + \frac{\omega \mu}{\underline{k}_{z}} \frac{1}{\rho} \frac{\partial \underline{H}_{z}}{\partial \varphi} \right) \\ E_{\varphi} &= E_{\varphi}^{E} + E_{\varphi}^{H} = -j \frac{\underline{k}_{z}}{\underline{k}^{2} - \underline{k}_{z}^{2}} \left(\frac{1}{\rho} \frac{\partial \underline{E}_{z}}{\partial \varphi} - \frac{\omega \mu}{\underline{k}_{z}} \frac{\partial \underline{H}_{z}}{\partial \rho} \right) \\ \underline{H}_{\rho} &= \underline{H}_{\rho}^{H} + \underline{H}_{\rho}^{E} = -j \frac{\underline{k}_{z}}{\underline{k}^{2} - \underline{k}_{z}^{2}} \left(\frac{\partial \underline{H}_{z}}{\partial \rho} - \frac{\omega \varepsilon}{\underline{k}_{z}} \frac{1}{\rho} \frac{\partial \underline{E}_{z}}{\partial \varphi} \right) \\ \underline{H}_{\varphi} &= \underline{H}_{\varphi}^{H} + \underline{H}_{\varphi}^{E} = -j \frac{\underline{k}_{z}}{\underline{k}^{2} - \underline{k}_{z}^{2}} \left(\frac{1}{\rho} \frac{\partial \underline{H}_{z}}{\partial \varphi} + \frac{\omega \varepsilon}{\underline{k}_{z}} \frac{\partial \underline{E}_{z}}{\partial \rho} \right) \end{split}$$

Lösung der Helmholtzgleichung in Zylinderkoordinaten (I)

- Gemäß dem Produktansatz von Bernoulli setzen für E- bzw. H-Wellen an, dass $\underline{F}(\rho, \varphi) = R(\rho) \underline{\Phi}(\varphi)$.
- Setzen wir den obigen Ansatz für die longitudinaten Feldkomponenten geführter Wellen in Zylinderkoordinaten in die Helmholtzgleichung ein, so erhalten wir Gleichungen der Form

$$\frac{\rho^2}{R}\frac{\partial^2 R}{\partial \rho^2} + \frac{\rho}{R}\frac{\partial R}{\partial \rho} + \frac{1}{\Phi}\frac{\partial^2 \Phi}{\partial \varphi^2} + \left(\underline{k}^2 - \underline{k}_z^2\right)\rho^2 = 0$$

• Diese lässt sich mit der Separationskonstante \underline{m} und der transversalen Wellenzahl $\underline{k}_t^2 = \underline{k}^2 - \underline{k}_z^2$ separieren in die beiden Differentialgleichungen

$$\begin{split} & \frac{\partial^2 \underline{\Phi}}{\partial \varphi^2} + \underline{m}^2 \underline{\Phi} = 0 \\ & \rho^2 \frac{\partial^2 R}{\partial \rho^2} + \rho \frac{\partial R}{\partial \rho} + \left[\underline{k}_{\rm t}^2 \rho^2 - \underline{m}^2 \right] R = 0 \,. \end{split}$$

Lösung der Helmholtzgleichung in Zylinderkoordinaten (II)

• Die erste Gleichung ist eine homogene lineare Differentialgleichung zweiter Ordnung, welche unter der Randbedingung $\Phi(\varphi = 0) = \Phi(\varphi = 2\pi)$, für ganzzahlige $m \ge 0$ Lösungen folgender Form aufweist

 $\underline{\Phi}(\varphi) = \underline{c}_1 \sin\left(m\varphi\right) + \underline{c}_2 \cos\left(m\varphi\right) \ .$

- Bei der zweiten Gleichung unterscheiden wir für reellwertige m zwei Fälle:
 - Für reellwertige und positive \underline{k}_{t}^{2} , d.h. rein reellwertige k_{t} , können wir die zweite Gleichung mit $x = k_{t}\rho$ in die Besselsche Differentialgleichung überführen, deren reellwertige Lösungen allgemein als Zylinderfunktionen bzw. Besselfunktionen bezeichnet werden.
 - Für reellwertige und negative <u>k</u>²_t, d.h. rein imaginäre <u>k</u>_t, können wir die zweite Gleichung mit x = ℑ{<u>k</u>_t}ρ in die modifizierte Besselsche Differentialgleichung überführen, deren reellwertige Lösungen als modifizierte Besselfunktionen bezeichnet werden.

Besselfunktionen

• Die Besselsche Differentialgleichung lautet:

$$x^{2}\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}} + x\frac{\mathrm{d}f}{\mathrm{d}x} + \left[x^{2} - m^{2}\right]f = 0$$

- Sie wird gelöst durch:
 - Besselfunktionen erster Gattung: $J_m(x)$
 - Besselfunktionen zweiter Gattung: $N_m(x)$ (auch Neumann Funktionen)

Modifizierte Besselfunktionen

Die modifizierte Besselsche Differentialgleichung lautet:

$$x^{2}\frac{\mathrm{d}^{2}f}{\mathrm{d}x^{2}} + x\frac{\mathrm{d}f}{\mathrm{d}x} - \left[x^{2} + m^{2}\right]f = 0$$

- Sie wird gelöst durch:
 - Modifizierte Besselfunktionen erster Gattung: $I_m(x)$
 - Modifizierte Besselfunktionen zweiter Gattung: $K_m(x)$ (auch MacDonald-Funktionen)

Weitere Lösungen der Radialgleichung

• Für den Fall, dass $\underline{k}_t = 0$ gilt, erhalten wir aus der (modifizierten) Besselschen Differentialgleichung die Eulersche Differentialgleichung

$$\rho^2 \frac{\partial^2 R}{\partial \rho^2} + \rho \frac{\partial R}{\partial \rho} - \underline{m}^2 R = 0$$

• Diese Differentialgleichung können wir mit $\underline{c}_3, \underline{c}_4 \in \mathbb{C}$ lösen durch

$$R(\rho) = \rho^{\pm m} \left(\underline{c}_3 \ln \rho + \underline{c}_4\right) \,,$$

was sich für den Fall m = 0 weiter vereinfacht zu

$$R(\rho) = \underline{c}_3 \ln \rho + \underline{c}_4 \,.$$

Vorlesungsinhalte

1. Zylindersymmetrische Kanalwellenleiter

2. Rundhohlleiter

3. Was Sie gelernt haben sollten

Einleitung und Motivation

- Hohlleiter mit kreisförmigen oder elliptischem Querschnitt sind flexibler als Hohlleiter mit rechteckigem Querschnitt. Längere Wellenleiter lassen sich so auf Kabeltrommeln aufwickeln.
- Gerillte Hohlleiter (engl. corrugated waveguides) lassen noch geringere Biegeradien zu.
- Aufgrund ihrer Flexibilität werden sie häufig als Wellenleiter für Funk-Basisstationen und Antennenzuläufe verwendet.

Lösung der Randbedingungen für E-Wellen

- An der ideal leitenden Innenwand des Rundhohlleiters bei $\rho = a$ müssen gemäß der Randbedingungen die tangentialen Komponenten des E-Feldes verschwinden.
- Dies ist nur für reelle $k_t^2 = k^2 k_z^2 > 0$ möglich, da die modifizierten Besselfunktionen für $\rho > 0$ keine Nullstellen besitzen.
- Für E-Wellen muss also gelten, dass $\underline{E}_z(a, \varphi, z) = \underline{E}_0 \underline{F}^E(a, \varphi) e^{-j \underline{k}_z z} = 0.$
- Da die Neumannfunktionen bei $\rho = 0$ eine Singularität aufweisen, kommen für die radiale Abhängigkeit nur die Besselfunktionen in Frage, sodass

$$\underline{E}_{z}^{m,n} = \left\{ \begin{array}{c} \underline{E}_{0}^{m,n,\mathsf{h}} \\ \underline{E}_{0}^{m,n,\mathsf{v}} \end{array} \right\} J_{m} \left(k_{\mathsf{t}} \rho \right) \left\{ \begin{array}{c} \cos(m\varphi) \\ \sin(m\varphi) \end{array} \right\} e^{-\operatorname{j} \underline{k}_{z} z}$$

- Damit die Randbedingung $\underline{E}_{z}^{m,n}(\rho = a) = 0$ erfüllt ist, muss gelten, dass $k_{t} = \frac{j_{m,n}}{a}$ ist, wobei $j_{m,n}$ die *n*-te Nullstelle der Besselfunktion J_{m} größer null ist.
- Für m > 0 ergibt sich jeweils eine horizontal und eine vertikal orientierte Lösung (man spricht von zweifacher Entartung).

Moden der E-Welle im Rundhohlleiter

- Die Tabelle zeigt die Realteile $E_z^{m,n} = \Re\{\underline{E}_z^{m,n}\}$ der ersten sechs Moden der E-Welle in der Ebene z = 0.
- Die Schwingungsfrequenz sowie der Hohlleiterradius sind konstant.
- Je dunkler der Rotton, desto positiver der Wert, je dunkler der Blauton, desto negativer.
- Die Abbildungen zeigen, dass m die Anzahl der Perioden entlang der azimuthalen Achse (φ) bzw. n die Anzahl der Nullstellen (exklusive Koordinatenursprung) entlang der radialen Achse (r) angibt.

Ausbreitungskonstanten der E-Welle

- Die Abbildung zeigt die normierte Ausbreitungskonstante der E-Welle k_z/k₀ als Funktion der normierten Wellenzahl ak₀ = aω/c.
- $\hfill \ensuremath{\bullet}$ Die Tupel (m,n) geben die entsprechenden Modenzahlen an.
- Die gestrichelten vertikalen Linien geben jeweils die normierten Grenzfrequenzen an; die Tabelle schlüsselt die zugehörigen Werte (die Nullstellen der Besselfunktion) auf.

Lösung der Randbedingungen für H-Wellen

Analog setzen wir für H-Wellen an, dass

$$\underline{H}_{z}^{m,n} = \left\{ \begin{array}{c} \underline{H}_{0}^{m,n,\mathbf{h}} \\ \\ \underline{H}_{0}^{m,n,\mathbf{v}} \end{array} \right\} J_{m} \left(k_{\mathbf{t}} \rho \right) \left\{ \begin{array}{c} \cos(m\varphi) \\ \sin(m\varphi) \end{array} \right\} e^{-j \underline{k}_{z} z}$$

• Im Falle von H-Wellen existiert keine E_z -Komponente. Es muss jedoch auch die E_{φ} -Komponente auf der Innenseite der Hohlleiterwand verschwinden. Damit erhalten wir

$$\begin{split} E_{\varphi}^{H}(a,\varphi,z) &= j \frac{\omega\mu}{k_{t}^{2}} \frac{\partial \underline{H}_{z}}{\partial \rho} \Big|_{\rho=a} = \underline{H}_{0} \frac{\partial \underline{F}^{H}(\rho,\varphi)}{\partial \rho} \Big|_{\rho=a} e^{-j \underline{k}_{z} z} = 0 \\ \implies \quad \frac{\mathrm{d}J_{m}(k_{t}\rho)}{\mathrm{d}\rho} \Big|_{\rho=a} \propto J_{m}'(k_{t}a) = 0 \end{split}$$

• Dabei muss also für die transversale Wellenzahl gelten, dass $k_t = \frac{j'_{m,n}}{a}$ ist, wobei $j'_{m,n}$ die *n*-te Nullstelle der abgeleiteten Besselfunktion J'_m größer null ist.

Moden der H-Welle im Rundhohlleiter

- Die Tabelle zeigt die Realteile $H_z^{m,n} = \Re\{\underline{H}_z^{m,n}\}$ der ersten sechs Moden der H-Welle in der Ebene z = 0.
- Die Schwingungsfrequenz sowie der Hohlleiterradius sind konstant.
- Je dunkler der Rotton, desto positiver der Wert, je dunkler der Blauton, desto negativer.
- Die Abbildungen zeigen, dass m die Anzahl der Perioden entlang der azimuthalen Achse (φ) bzw. n die Anzahl der Nullstellen (*inklusive* Koordinatenursprung) entlang der radialen Achse (r) angibt.

Ausbreitungskonstanten der H-Welle

- Die Abbildung zeigt die normierte Ausbreitungskonstante der *H-Welle* k_z/k_0 als Funktion der normierten Wellenzahl $ak_0 = a\omega/c$.
- $\hfill \ensuremath{\bullet}$ Die Tupel (m,n) geben die entsprechenden Modenzahlen an.
- Die gestrichelten vertikalen Linien geben jeweils die normierten Grenzwellenzahlen an; die Tabelle schlüsselt die zugehörigen Werte (die Nullstellen der abgeleiteten Besselfunktion) auf.
- Die Grundmode ist damit die H^{1,1}-Mode, die nächsthöhere Mode ist dann die E^{0,1}-Mode.

Karlsruher Institut für Technologie

Vorlesungsinhalte

1. Zylindersymmetrische Kanalwellenleiter

2. Rundhohlleiter

3. Was Sie gelernt haben sollten

Was Sie gelernt haben sollten

- Mit welchem Ansatz wir die Wellengleichungen f
 ür die longitudinalen Feldkomponenten im Rundhohlleiter analytisch l
 ösen k
 önnen.
- Wie die Besselsche bzw. modifizierte Besselsche Differentialgleichung zusammenhängen.
- Welche Funktionen die Besselsche bzw. modifizierte Besselsche Differentialgleichung lösen.
- Welche Randbedingungen im Rundhohlleiter erfüllt sein müssen und welche Lösungen wir daher für die longitudinalen Feldkomponenten der E- und H-Wellen erhalten.
- Wie die E- bzw. H-Moden im Rundhohlleiter aussehen.
- Weshalb sich die Ausbreitungskonstanten der E- und H-Wellen für identische Modenzahlpaare unterscheiden.