Matrikel-Nr.:	Name:	Platz-Nr.:	ES WS'21/22 07.04.2022
			Seite 1 von 47

Schriftliche Prüfung im Fach

Elektronische Schaltungen

- Bitte beachten Sie die Hinweise auf der folgenden Seite.
- Beginnen Sie mit den Aufgaben, die Ihnen am leichtesten fallen.

Einzelresultate

Aufgabe	1	2	3	4	5	6	7	8
erreichbare Punkte	13	16	15	16	20	11	16	13
erzielte Punkte								

Gesamtbewertung

Punkte maximal:	Gesamtpunkte:	Bonuspunkte:	Note:
120			

Matrikel-Nr.:	Hinweise
	zur Klausu

ES WS'21/22 07.04.2022 Seite 2 von 47

- 1. Die Prüfungsdauer beträgt 2 Stunden.
- 2. Zur Bearbeitung der Klausur sind keine Hilfsmittel zugelassen, außer Schreibzeug, Zirkel, Lineal, ein nicht-programmierbarer, komplexer Taschenrechner und ein handschriftliches, beidseitig beschriebenes Blatt als Formelsammlung.

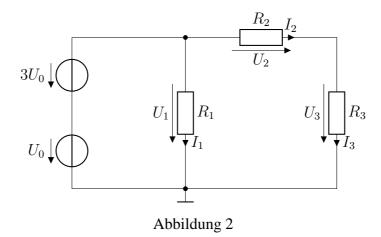
Klausur

- 3. Die Lösungen müssen auf den ausgegebenen Blättern in den dafür vorgesehenen Lösungskästen niedergeschrieben werden. Geben Sie zu den Zahlenwerten auch immer die zugehörigen Einheiten an. Achten Sie auch auf die korrekte Beschriftung der Diagramme. Falls der Platz nicht ausreicht, muss auf dem Lösungsblatt ein Hinweis auf die Fortsetzung gegeben werden und von der Aufsicht ein gestempeltes Zusatzblatt angefordert werden. Bei zweifelhafter Zuordnung kann die Lösung nicht gewertet werden. Benutzen Sie kein eigenes Papier.
- 4. Bei allen Aufgaben muss der Lösungsweg klar erkennbar und eindeutig dargestellt werden. In einigen Aufgaben ist dies die wesentliche Prüfungsleistung. Lösungen ohne ausreichende Begründung werden nicht gewertet. Das Gleiche gilt für mehrdeutige Lösungen oder Formulierungen.
- 5. Verwenden Sie bei der Lösung der Aufgaben weder rote oder grüne Farbe noch Bleistift und kennzeichnen Sie Ihre Ergebnisse deutlich. Lösungen in roter Farbe oder Bleistift können nicht gewertet werden. Zeichnungen in Diagrammen dürfen mit Bleistift gemacht werden.
- 6. Tragen Sie vor Beginn der Klausur Nachname, Vorname und Matrikelnummer auf dem Deckblatt ein und beschriften Sie jedes Lösungsblatt mit Ihrer Matrikelnummer. Alle Blätter, auch die Zusatzblätter, müssen die Matrikelnummer des/der Kandidat:in tragen. Wer diese Regeln, die einer raschen Bearbeitung dienen, nicht einhält, kann nicht erwarten, dass er kurzfristig über das Ergebnis seiner Prüfung informiert wird. Die Lösungsblätter müssen vollständig, d.h. zusammen mit allen zusätzlich ausgeteilten Blättern, abgegeben werden. Heften Sie alle Blätter mit der beiliegenden Faltklammer zusammen.
- 7. Legen Sie Ihren Studentenausweis und ggfs. den Zulassungsschein bereit.
- 8. Der Umfang der gesamten Klausur beträgt 47 Seiten und besteht aus 8 Aufgaben. Prüfen Sie diese direkt nach Erhalt auf Vollständigkeit.
- 9. Die Ergebnisse der Klausur werden nach der Korrektur im Campus System veröffentlicht. Der Zeitpunkt der Veröffentlichung wird im Internet bekannt gegeben.

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 1	ES WS'21/22 07.04.2022 Seite 3 von 47					
Aufgabe 1 Netzwerkanalyse		(gesamt 13 Punkte)					
folgende Werte: $R_1 = 500$	niedene passive Netzwerke untersucht werden. Die V Ω und $R_2=800\Omega$. ung in Abb. 1. Es gilt $U_0=2.5\mathrm{V}$. Berechnen Sie d						
und U_2 sowie die Ström	ne I_1 und I_2 .	ine Spannungen en (31)					
	R_2 I_2 I_2 I_2						
	$U_0 \downarrow \bigcirc \qquad \qquad \downarrow I_1$						
	 Abbildung 1						

IV	16	31	r	lł	((Э	I -	ŀ	1	r.	:				

Aufgabe 1


ES WS'21/22 07.04.2022

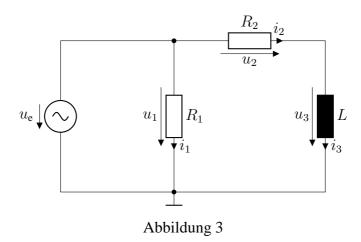

Seite 4 von 47

(2 P.)

b) Die Schaltung wird mit einem dritten Widerstand $R_3=450\,\Omega$ nach Abb. 2 erweitert. Berechnen Sie U_3 und I_3 .

(Werte aus vorherigen Aufgabenteilen: $U_0=2.5\,\mathrm{V},\,R_1=500\,\Omega,\,R_2=800\,\Omega$)

Ma	tr	ık	е	ŀ	-[V	r.	•				


Aufgabe 1

ES WS'21/22 07.04.2022

Seite 5 von 47

c) Der Widerstand R_3 wird nun mit einer Induktivität $L=850\,\mathrm{pH}$ ausgetauscht und die Gleichspannungsquellen werden durch eine einzelne Wechselspannungsquelle ersetzt, siehe Abb. 3. Geben Sie die komplexe Übertragungsfunktion $H(\omega)=\frac{u_3}{u_e}$ der Schaltung sowie deren Betrag $|H(\omega)|$ als Funktion der Kreisfrequenz ω und der passiven Bauelemente an.

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 1	ES WS'21/22 07.04.2022 Seite 6 von 47				
Berechnen Sie jeweils l	ngsquelle in Abb. 3 gilt $u_{\rm e}=7.5{ m V}\cdot\sin(2\pi f\cdot t)$, w Betrag und Phase (in °) der Wechselspannung u_3 . Aufgabenteilen: $R_1=500\Omega,R_2=800\Omega,L=850\Omega$		(2 P.)			

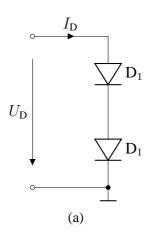
Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022				
	Aufgabe 1	Seite 7 von 4				
e) Berechnen Sie die $3\mathrm{dB}$ verlauf von $ H(\omega) =$ Skizze. Achten Sie auf	B-Grenzfrequenz f_{3dB} der Schaltung und skizzieren $\frac{u_3}{u_e}$ im Bode-Diagramm. Markieren Sie f_{3dB} und die korrekte Beschriftung der Achsen.	Sie den Frequenz- Steigung in Ihrer	(4 P.)			

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022 Seite 8 von 47

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 2 ES WS'21/22 07.04.2022 Seite 9 von 47					
Aufgabe 2 Diode Im Folgenden soll das Verl Teil 1:	nalten von unterschiedlichen Diodenschaltungen ana	(gesamt 16 Punkte)				
	Kennlinie einer idealen Diode mit $U_{\rm F}=0.9{ m V}$ un ereich. Achten Sie auf korrekte Beschriftung des I					
		\rightarrow				

Ma	tr	ik	е	· -	-1	1	r.	:				
	_		_	_	_				_	_	_	_

Aufgabe 2


ES WS'21/22

07.04.2022

Seite 10 von 47

b) Es sind die Schaltungen aus idealen Dioden aus Abb. 4 gegeben. Für die idealen Dioden gilt: D_1 : $U_{Br} = 70 \,\mathrm{V}$, $U_F = 0.9 \,\mathrm{V}$ und D_{Z2} : $U_{Br} = 4 \,\mathrm{V}$ und $U_F = 0.7 \,\mathrm{V}$. Skizzieren Sie die I/U Kennlinien der Schaltungen. Achten Sie auf korrekte Beschriftung der Diagramme.

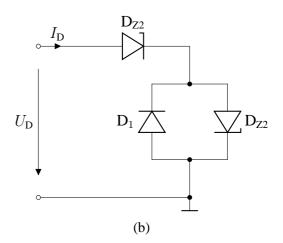
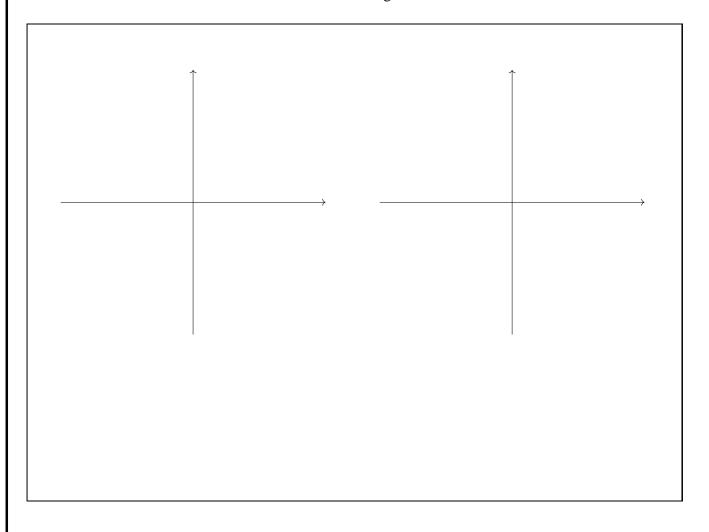



Abbildung 4

Mat	rik	el-	-N	lr.:			
					 _		

Aufgabe 2

ES WS'21/22 07.04.2022

Seite 11 von 47

c) Die Schaltung aus Abb. 4a, weiterhin bestehend aus idealen Dioden, wird mit einer Wechselspannungsquelle erweitert. Die Wechselspannung beträgt $u_{\rm e}(t)=1\,{\rm mV}\cdot\sin(\omega_{\rm C}t+25^{\circ})$ mit $\omega_{\rm C}=3\times10^9\,{\rm \frac{rad}{s}}$, siehe Abb. 5. Berechnen Sie den zeitlichen Verlauf des Wechselstroms $i_{\rm e}(t)$ für den Arbeitspunkt bei $U_0=1.7\,{\rm V}$. Die Temperaturspannung beträgt $U_{\rm T}=26\,{\rm mV}$ und für den Sperrstrom gilt $I_{\rm S}=0.1\,{\rm fA}$.

(4 P.)

Hinweise: Es kann angenommen werden, dass die Näherungen für das Kleinsignalverhalten gelten.

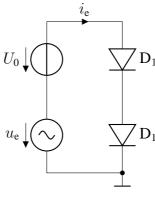
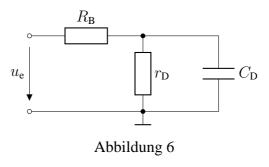


Abbildung 5

Matrikel-Nr.:																		

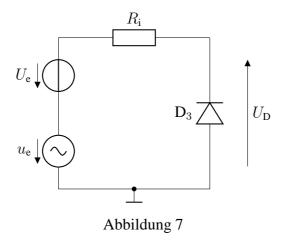
Aufgabe 2

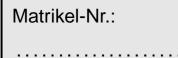

ES WS'21/22 07.04.2022

Seite 12 von 47

Teil 2:

d) In Abb. 6 ist das Kleinsignal-Ersatzschaltbild einer realen Diode gegeben. Was wird jeweils von den drei Bauteilen im Ersatzschaltbild modelliert? Benennen Sie diese kurz, es ist keine Erklärung gefordert.





e) Es ist die Schaltung aus Abb. 7 mit der realen Diode D_3 gegeben. In Abb. 8 ist die Abhängigkeit der Sperrschichtkapazität $C_{\rm S}$ über der Gleichspannung $U_{\rm D}$ der Diode gegeben. Die Grenzfrequenz der Schaltung liegt bei $f_{\rm 3dB}=5,3\,{\rm GHz}$. Für den Widerstand gilt $R_{\rm i}=10\,\Omega$. Bestimmen Sie die Sperrschichtkapazität $C_{\rm S}$ und die Spannung $U_{\rm D}$ über der Diode im Arbeitspunkt.

Hinweise: Die Diode wird in Sperrrichtung betrieben und es gilt $R_B = 0$.

Aufgabe 2

ES WS'21/22 07.04.2022

Seite 13 von 47

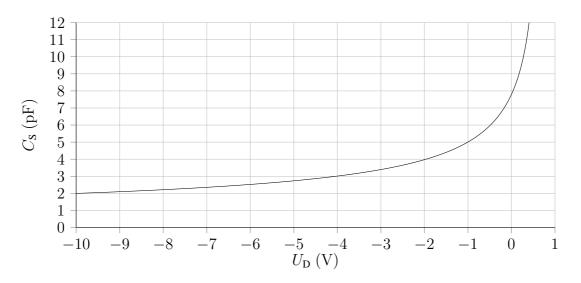
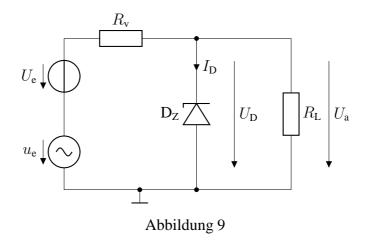


Abbildung 8

Matrikel-Nr.:	Elektronische Schaltungen		
	Aufgabe 2		

ES WS'21/22 07.04.2022


Seite 14 von 47

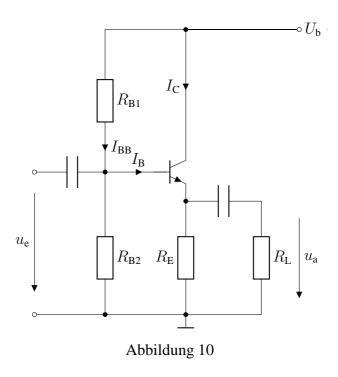
Teil 3:

f) Gegeben ist die Schaltung aus Abb. 9. Für die Widerstände gilt $R_{\rm v}=10\,\Omega$ und $R_{\rm L}=200\,\Omega$. Die Zener-Diode besitzt eine Zener-Spannung von $U_{\rm Z}=4.1\,{\rm V}$ und wird in einem Arbeitspunkt von $U_{\rm D}=4.1\,{\rm V}$ und $I_{\rm D}=20\,{\rm mA}$ betrieben. Über der Gleichspannung $U_{\rm e}$ ist eine Störspannung $u_{\rm e}$ überlagert. Die Temperaturspannung beträgt $U_{\rm T}=26\,{\rm mV}$. Berechnen Sie den Glättungsfaktor $G=\frac{u_{\rm e}}{u_{\rm a}}$ der Schaltung.

Hinweise: Die Kleinsignalnäherungen können angewendet werden, es gilt $n_{\rm Br}=1$. Die Zener-Diode kann als ideal angenommen werden.

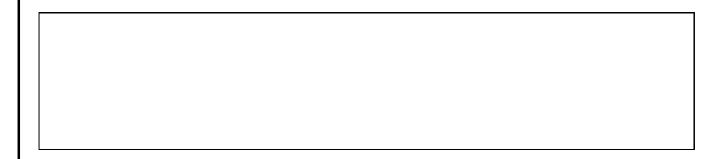
Matrikel-Nr.:	Elektronische Schaltunger	
	Aufgabe 3	

ES WS'21/22 07.04.2022 Seite 15 von 47


Aufgabe 3

(gesamt 15 Punkte)

Bipolar-Grundschaltung


Die Schaltung in Abb. 10 ist gegeben. Die Stromverstärkung des Transistors beträgt $B=\beta=100$. Im Arbeitspunkt soll der Kollektorstrom $I_{\rm C}=2\,{\rm mA}$ betragen und die Kollektor-Emitter-Spannung $U_{\rm CE}=2\,{
m V}.$ Außerdem beträgt die Versorgungsspannung $U_{\rm b}=4\,{
m V}$ und der Lastwiderstand $R_{\rm L}=100\,\Omega.$ Die Temperaturspannung beträgt $U_{\rm T}=26\,{\rm mV}.$

Es kann angenommen werden, dass $I_{\rm C}\gg I_{\rm B}$ gilt. Für Wechselspannungen können die Kondensatoren als Kurzschluss betrachtet werden.

a) In welcher Grundschaltung wird der Transistor betrieben?

(1 P.)

Mat	rik	el-	·N	r.:			

Aufgabe 3

ES WS'21/22 07.04.2022

Seite 16 von 47

b) Die Eingangskennlinie des Transistors ist in Abb. 11 gegeben. Bestimmen Sie die Widerstandswerte $R_{\rm B1}$, $R_{\rm B2}$ und $R_{\rm E}$, mit denen der Arbeitspunkt eingestellt werden kann. Die Faustregel $I_{\rm BB}=10I_{\rm B}$ soll gelten.

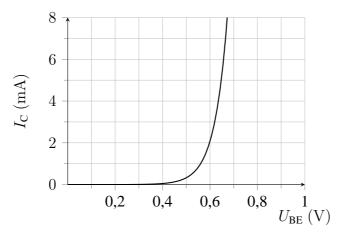


Abbildung 11

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 3	ES WS'21/22 07.04.2022 Seite 17 von 47
c) Zeichnen Sie das Klein	signal-Ersatzschaltbild der gesamten Schaltung.	(4P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 3	ES WS'21/22 07.04.2022 Seite 18 von 47
	Aufgaben wird der Early-Effekt vernachlässigt. Vignal-Ersatzschaltbild aus Aufgabenteil c? (Erkläreng benötigt.)	
e) Berechnen Sie den Klei	insignal-Ausgangswiderstand $r_{ m a}$ der gesamten Schal	tung. (2 P .)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 3	07.04.20 Seite 19 v)22
f) Berechnen Sie die Klein	nsignal-Spannungsverstärkung $A_0=rac{u_{ m a}}{u_{ m e}}$ der gesamte	en Schaltung.	(2 P.)

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022 Seite 20 von 47

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 4	ES WS'21/22 07.04.2022 Seite 21 von 47
spannung $U_b = 2 \mathrm{V}$. Die spannungen der beiden Tr $ U_{\mathrm{A,n}} = U_{\mathrm{A,p}} = 50 \mathrm{V}$. Au	in Abb. 13 mit dem Widerstand $R_{\rm g}=100{\rm k}\Omega$ und Gatelänge der Transistoren sei $l_{\rm n}=l_{\rm p}=20{\rm nm}$. ansistoren gilt $ U_{\rm th,n} = U_{\rm th,p} =0.4{\rm V}$. Die Earlynßerdem sind der Kapazitätsbelag $C_{\rm ox}'=6.25{\rm fF\over \mu m^2}$ so MOS bzw. $\mu_{\rm p}=400{\rm cm^2\over Vs}$ für den p-MOS bekannt. $U_{\rm g}\qquad \qquad U_{\rm b}=2{\rm V}$	Für die Schwell- Spannung beträgt
	Abbildung 13	
	his der Gatebreiten $w_{\rm p}/w_{\rm n}$ von p-MOS bzw. n-MOS parameter $\beta_{\rm p}=\beta_{\rm n}$ gilt?	S gewählt werden, (1P.

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 4	ES WS'21/22 07.04.2022 Seite 22 von 47
Spannnung von $U_{GS,n}$ = Geben Sie außerdem di den p-MOS Transistor	ag $U_{\rm g}$ gewählt werden, damit sich im Arbeitspunkt en $1~{\rm V}$ (n-MOS) bzw. $U_{\rm GS,p}=-1~{\rm V}$ (p-MOS) einstelle Drain-Source Spannung im Arbeitspunkt für den nur $(U_{\rm DS,p})$ an und begründen Sie durch eine kurze Rechnsistoren betrieben werden.	It? -MOS $(U_{\mathrm{DS,n}})$ und
c) Berechnen Sie die Gate von 20 mA im Arbeitsp	ebreiten $w_{\rm n}$ und $w_{\rm p}$ der beiden Transistoren, sodass sibunkt einstellt.	ch ein Drainstrom (2 P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 4	ES WS'21/22 07.04.2022 Seite 23 von 47		
d) Welche Verlustleistung	ergibt sich für den CMOS-Verstärker im Arbeitspur	nkt? (1 P.)		

Ma	tr	ik	е	 -	Ν	r.	:					
	_				_	_	_	_	_	_	_	_

Aufgabe 4

ES WS'21/22 07.04.2022

Seite 24 von 47

Der CMOS-Verstärker wird wie in Abbildung 14 dargestellt erweitert:

- Am Eingang des CMOS-Verstärkers wird eine Wechselspannung \boldsymbol{u}_{e} angelegt.
- Außerdem wird der Ausgang mit dem Lastwiderstand $R_{\rm L}=530\,\Omega$ belastet.
- Die Koppelkondensatoren können als idealer Kurzschluss für Wechselsignale betrachtet werden.

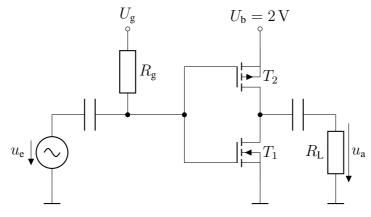


Abbildung 14

e) Zeichnen Sie das Kleinsignal-Ersatzschaftbild der Schaftung aus Abb. 14.	(4 P.)
	(

Matrikel-Nr.:		che Schaltungen fgabe 4		07.	VS'21/22 04.2022 25 von 47
f) Berechnen Sie die Klei	nsignal-Spannungsver	stärkung $A_0=rac{u_{ m a}}{u_{ m e}}$ d	es CMOS-	Verstärkers	. (3 P.)
g) Skizzieren Sie je vier I Eingangs-Wechselspan	Perioden der Ausgangs	sspannung $u_{\mathbf{a}}(t)$ im	Zeitbereic	ch, wenn fol	gende (2 P.)
Achten Sie auf vollstä			# * 1 G112		
		1			+

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022 Seite 26 von 47

Matrikel-Nr.:	Elektronische Schaltungen
	Aufgabe 5

ES WS'21/22 07.04.2022 Seite 27 von 47

Aufgabe 5 (gesamt **20** Punkte)

Mehrstufige Verstärkerschaltung

Es ist die Schaltung aus Abb. 15 gegeben. Der Transistor T_1 ist durch $\beta=150\frac{\rm mA}{\rm V^2}$ und $U_{\rm th}=0.3~{\rm V}$ charakterisiert und soll im Arbeitspunkt von $U_{\rm GS}=0.8\,{\rm V}$ und $I_{\rm D}=6.75\,{\rm mA}$ betrieben werden. Die Widerstände haben die Werte $R_{\rm g}=2\,\Omega,~R_{\rm G,1}=50\,\Omega,~R_{\rm D}=100\,\Omega$ und $R_{\rm L}=400\,\Omega.$ Die parasitären Kapazitäten ergeben sich zu: $C_{GS} = 1 \,\mathrm{pF}, \, C_{GD} = 0.2 \,\mathrm{pF}.$

Hinweise: Die Kanallängenmodulation kann vernachlässigt werden und die Koppelkondensatoren können für Wechselspannungen als Kurzschluss betrachtet werden.

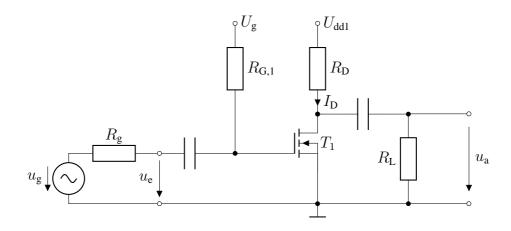


Abbildung 15

a) Zeichnen Sie das vollständige Kleinsignal-Ersatzschaltbild der Schaltung aus Abb. 15. Hinweis: Berücksichtigen Sie das dynamische Verhalten des Transistors.					

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022		
	Aufgabe 5	Seite 28 von		
b) Geben Sie die Niederft Abb. 15 an. Falls Sie V kurz.	requenz-Betriebsspannungsverstärkung $A_{\rm B0}=rac{u_{\rm a}}{u_{\rm g}}$ Vereinfachungen vornehmen, geben Sie diese an u	der Schaltung aus nd begründen Sie	(3 P.)	

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022
	Aufgabe 5	Seite 29 von 47
c) Berechnen Sie die Eir Theorems.	ngangs- und Ausgangskapazität der Schaltung mit	Hilfe des Miller- (3 P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 5	ES WS'21/ 07.04.2022 Seite 30 von	2
	B-Grenzfrequenz der Schaltung und zeichnen Sie de $\operatorname{Kung} A_{\operatorname{B}}$ in ein Bode-Diagramm. Nehmen Sie an, das tig ist.		(4 P.)
e) Berechnen Sie den Klei	nsignal-Eingangswiderstand $r_{\rm e}$ der Schaltung aus A	bb. 15.	(1 P.)

Matri	kel-N	۱r.:	

Aufgabe 5

ES WS'21/22 07.04.2022

Seite 31 von 47

Die Schaltung wird nun mit einer Gate-Schaltung als 2. Stufe wie in Abb. 16 erweitert. Der Transistor T_2 ist baugleich zu Transistor T_1 . Die Widerstände $R_{\rm g}$, $R_{\rm G,1}$, $R_{\rm D}$ und $R_{\rm L}$ bleiben unverändert.

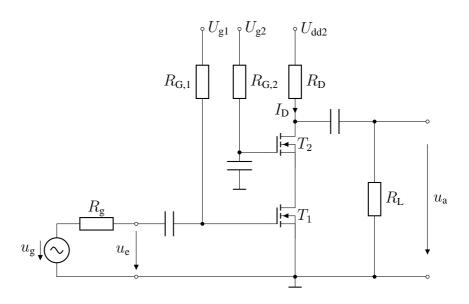
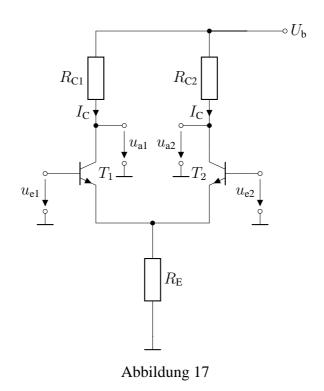


Abbildung 16

f)	Wie muss die Versorgungsspannung $U_{\rm dd2}$ im Vergleich zu $U_{\rm dd1}$ verändert werden, sodass T_1 im gleichen Arbeitspunkt wie in Abb. 15 betrieben wird. Geben Sie hierfür eine Formel an, es muss kein spezifischer Wert berechnet werden.	(1

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 5	ES WS'21/22 07.04.2022 Seite 32 von 47	
	die Eingangs- und Ausgangskapazität sowie die $3\mathrm{d}$ oproximation ist weiterhin gültig.	B-Grenzfrequenz. (4P.)

Matrikel-Nr.:	Elektronische Schaltungen
	Aufgabe 6


07.04.2022 Seite 33 von 47

Aufgabe 6

(gesamt 11 Punkte)

Differenzverstärker

Gegeben ist der Differenzverstärker mit den beiden Transistoren T_1 und T_2 in Abbildung 17. Die beiden Transistoren T_1 und T_2 sind identisch aufgebaut und deren Arbeitspunkt soll bei $U_{\rm BE}=0.9\,{\rm V},~I_{\rm C}=5\,{\rm mA}$ und $U_{\rm CE}=1.4\,{\rm V}$ liegen. Die Early-Spannung der beiden Transistoren beträgt $|U_{\rm A,T12}|=150\,{\rm V}.$ Die Versorgungsspannung beträgt $U_{\rm b}=4.5\,{\rm V}.$ Die Widerstände $R_{\rm C1}$ und $R_{\rm C2}$ besitzen den Wert $R_{\rm C}=500\,\Omega.$ Außerdem gilt $U_{\rm T}=26\,{\rm mV}$ und $\beta\gg1.$

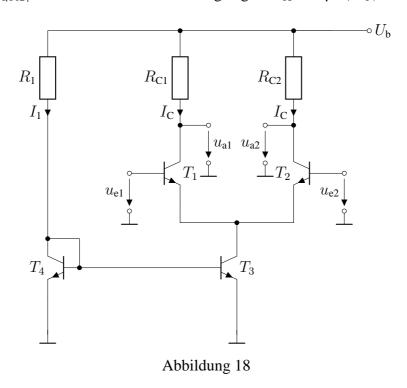
a) Berechnen Sie den Widerstand $R_{\rm E}$, sodass beide Transistoren im Arbeitspunkt betrieben werden.

(1 P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 6
b) Berechnen Sie die Glei	chtakt-Spannungsverstärkung $A_C = y_{c1}$

ES WS'21/22 07.04.2022

Seite 34 von 47 $=u_{a1,2}/u_{\rm G}$ der Schaltung. (1 P.)c) Berechnen Sie die Gegentakt-Spannungsverstärkung $A_{\rm D}=u_{\rm a}/u_{\rm D}=(u_{\rm a2}-u_{\rm a1})/(u_{\rm e2}-u_{\rm e1})$ (2 P.)der Schaltung. d) Berechnen Sie den Gleichtaktunterdrückungsfaktor CMRR. (1 P.)


Mat	rik	el	-N	١r.	:		

Aufgabe 6

ES WS'21/22 07.04.2022

Seite 35 von 47

Der Emitter-Widerstand $R_{\rm E}$ wird mit einer Stromquelle, bestehend aus $\rm T_3$ und $\rm T_4$, wie in Abbildung 18 ersetzt. Der Arbeitspunkt von $\rm T_1$ und $\rm T_2$ ($I_{\rm C}$, $U_{\rm CE}$) soll weiterhin so wie in den vorherigen Aufgabenteilen beibehalten werden. Der Arbeitspunkt von $\rm T_3$ soll bei $U_{\rm CE,T3}=U_{\rm CE,T12}=1,4\,\rm V$ und $U_{\rm BE,T3}=0,9\,\rm V$ liegen. Es gilt: $|U_{\rm A,T3}|=|U_{\rm A,T12}|=150\,\rm V$. Für die Emitterlängen gilt: $L_{\rm T3}=5\,\rm \mu m$, $L_{\rm T4}=1\,\rm \mu m$.

e) Berechnen Sie R_1 sowie die modifizierten Werte für $R_{\rm C1}$ und $R_{\rm C2}$, sodass die Transistoren $T_{\rm 1-3}$ im Arbeitspunkt betrieben werden.

(3P.)

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022
	Aufgabe 6	Seite 36 von 47
f) Berechnen Sie den neue	en Gleichtaktunterdrückungsfaktor CMRR.	(3 P.)

Т

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 7	ES WS'21/22 07.04.2022 Seite 37 von 47
$l_{\rm n}=l_{\rm p}=20{\rm nm}$. Die Gate	in Abb. 19. Es gilt $\mu_{\rm n}=3\mu_{\rm p}$. Die Gatelänge der T breite beträgt jeweils $w_{\rm n}=2\mu{\rm m}$ und $w_{\rm p}=6\mu{\rm m}$ ren ist betragsmäßig gleich und beträgt $ U_{\rm th} =1{\rm V}$	m. Die Threshold-
	$u_{\rm e}$ $\downarrow u_{\rm a}$ $\downarrow u_{\rm b}$ Abbildung 19	
a) Welche Spannungen $U_{\rm F}$ ein?	$_{ m I}$ und $U_{ m L}$ stellen sich jeweils am Ausgang für beide l	ogischen Zustände (2 P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 7	ES WS'21/22 07.04.2022 Seite 38 von 47
b) Bestimmen Sie die abso	oluten und relativen Störabstände der Schaltung.	(3
c) Skizzieren die Spannun	ngsübertragungsfunktion (U_{a} gegen U_{e}) der Schaltu	ing. (2
	6 4	

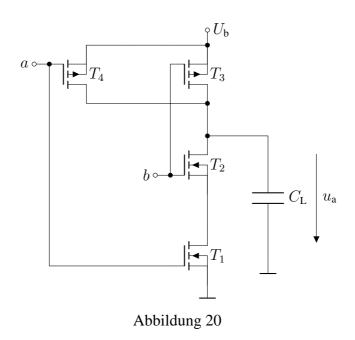
2

5 6 U_e (V)

Ν	1	a	tr	i	k	е	-	1-	V	r	. :				

Aufgabe 7

ES WS'21/22 07.04.2022


Seite 39 von 47

(3P.)

Teil 2

Das dynamische Verhalten des Gatters in Abb. 20 soll untersucht werden.

Die Steilheitsparameter der Transistoren betragen $\beta_{\rm n}=\beta_{\rm p}=2\,{\rm \frac{mA}{V^2}}$. Die Threshold-Spannung ist $|U_{\rm th}|=2\,{\rm V}$ und die Versorgungsspannung beträgt $U_{\rm b}=4\,{\rm V}$. Die logischen Signale sind $U_{\rm H}=U_{\rm b}$ und $U_{\rm L}=0\,{\rm V}$. Die kapazitive Last ist $C_{\rm L}=1\,{\rm nF}$.

d) Geben Sie die Wahrheitstabelle der Schaltung an. Füllen Sie außerdem für jeden Zustand aus, welche Transistoren leiten (L) und welche Transistoren sperren (S).

a	b	u_{a}	T_1	T_2	T_3	T_4
0	0					
0	1					
1	0					
1	1					

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 7	07.04.2022 Seite 40 von 47
Sie formelmäßig den ze	a und b werden gleichzeitig von LOW auf $HIGH$ um eitlichen Verlauf der Ausgangsspannung $u_{\rm a}(t)$ an uer Schaltung für diesen Fall.	geschaltet. Geben (4P.)

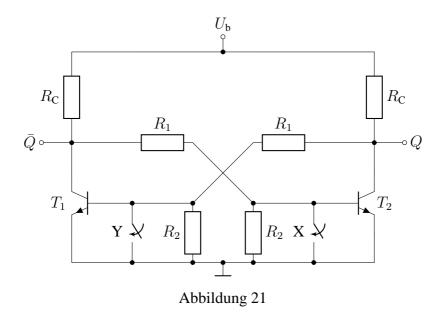
I

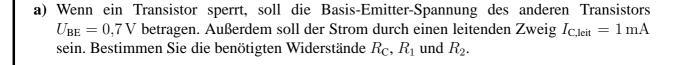
Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 7	07.04.2022 Seite 41 von 47
von aus, dass die Lastk	einer Clock-Frequenz von $f_{\rm Clk}=10{\rm MHz}$ betriebetapazität bei jedem Zyklus vollständig aufgeladen ude statische und dynamische Verlustleistung der Sc	en. Gehen Sie da- (2 P.) and entladen wird.

I

Matrikel-Nr.:	Elektronische Schaltungen	ES WS'21/22 07.04.2022 Seite 42 von 47

Matrikel-Nr.:	Elektronische Schaltungen
	Aufgabe 8


Aufgabe 8

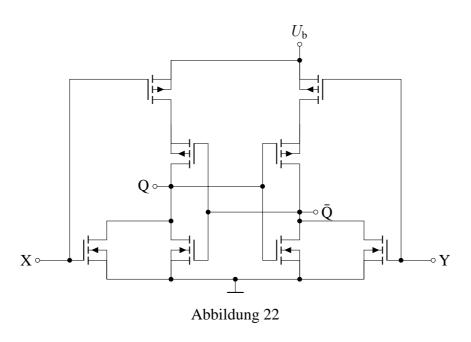

(gesamt 13 Punkte)

Kippschaltungen

Die Schaltung in Abb. 21 ist gegeben. Die Schalter werden von den Steuersignalen X und Y angesteuert. Der Basisstrom der Transistoren ist immer vernachlässigbar klein. Es kann außerdem angenommen werden, dass die Transistoren für $U_{\rm BE} \geq 0.7\,{\rm V}$ ideal leiten und für $U_{\rm BE} < 0.7\,{\rm V}$ hochohmig sperren.

Die Versorgungsspannung beträgt $U_{\rm b}=2\,{\rm V}$, die logische 1 soll $U_{\rm HIGH}=1\,{\rm V}$ entsprechen und die logische 0 $U_{\rm LOW}=0\,{\rm V}$.

(4 P.)


Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 8	ES WS'21/22 07.04.2022 Seite 44 von 47

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 8	ES WS'21/22 07.04.2022 Seite 45 von 47
b) Wie werden X und Y je	eweils üblicherweise genannt?	(1 <i>P</i> .)
	ische Verlustleistung der Schaltung. Gehen Sie da eichzeitig geschlossen sind.	von aus, dass die (2 P.)

Matrikel-Nr.:	Elektronische Schaltungen
	Aufgabe 8

Teil 2:

Gegeben ist die Schaltung in Abb. 22.

d) Geben Sie die Wahrheitstabelle der Schaltung an. Falls vorhanden, markieren Sie alle verbotenen Zustände eindeutig.

(2 P.)

Matrikel-Nr.:	Elektronische Schaltungen Aufgabe 8	ES WS'21/22 07.04.2022 Seite 47 von 47
e) Wie wird die Schaltung jeweils?	g üblicherweise bezeichnet? Welchen Signalen ent	esprechen X und Y (2

f) Könnte die Schaltung auch mit Bipolar-Transistoren realisiert werden? Welchen Nachteil wür-

de das mit sich bringen?

(2 **P**.)

(2 **P**.)