

## Institut für Mikro- und Nanoelektronische Systeme

Leiter: Prof. Dr. rer. nat. habil. Michael Siegel

Hertzstr. 16 D-76187 Karlsruhe

Telefon: +49 608 44961
Fax: +49 757925
E-Mail: info@ims.kit.edu
Web: http://www.ims.kit.edu

# Aufgaben zum Tutorium 4 "Elektronische Schaltungen" SS 2012

Gegeben ist eine Transistorschaltung nach Bild 18.1. Beide Transistoren haben eine Stromverstärkung von  $\beta = B = 400$ .

Die Widerstände haben folgende Werte:  $R_{C1}=R_{C2}=2~k\Omega,~R_E=2~k\Omega.$   $U_b=\pm~5~V$ 

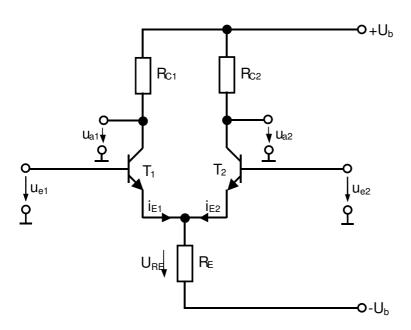



Bild 18.1

- 18.1 Um welche Grundschaltung handelt es sich hierbei?
- 18.2 Skizzieren Sie das Großsignal Ersatzschaltbild der Schaltung!
- 18.3 Berechnen Sie die Arbeitspunkte der beiden Transistoren für  $u_{e1} = u_{e2} = 0 \text{ V}$ ! (Annanhme: $U_{BE,T1} = U_{BE,T2} = 0,7 \text{ V}$ )
- 18.4 Skizzieren Sie das Kleinsignal Ersatzschaltbild der Schaltung!
- 18.5 Berechnen Sie den Gleichtakt-Eingangswiderstand re der Schaltung!
- 18.6 Berechnen Sie die Gleichtakt-Spannungsverstärkung A<sub>G</sub> der Schaltung!
- 18.7 Berechnen Sie die Gegentakt-Spannungsverstärkung der Schaltung!
- 18.8 Berechnen Sie den Gleichtaktunterdrückungsfaktor der Schaltung!

#### Aufgabe 19:

Gegeben sei eine Schaltung nach Bild 19.1. Die Operationsverstärker haben einen Frequenzgang nach Bild 19.2. Die Schaltung soll unter idealisierten Bedingungen betrachtet werden. Die Widerstände haben folgende Werte:  $R_1 = 10 \text{ k}\Omega$ ,  $R_2 = 100 \text{ k}\Omega$ ,  $R_3 = 10 \text{ k}\Omega$ ,  $R_4 = 1 \text{ M}\Omega$ .

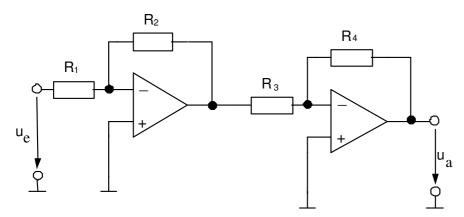



Bild 19.1



Bild 19.2

- 19.1 Nennen Sie die drei wichtigsten Eigenschaften eines idealen Operationsverstärkers!
- 19.2 Berechnen Sie die Gesamtverstärkung  $|A_{ges}|$  der Schaltung mit den Widerstandswerten aus 16.1! Bis zu welcher Grenzfrequenz  $f_{g1}$  kann die Schaltung betrieben werden?
- 19.3 Die Schaltung nach Bild 19.1 soll für folgende Randbedingungen neu ausgelegt werden:  $|A_{ges}| = 100$ ,  $f_{g2} = 100$  MHz.

Welche Werte müssen die Widerstände  $R_2$  bis  $R_4$  annehmen, wenn  $R_1$  = 10 k $\Omega$  bleiben soll?

Mit der Schaltung in Bild 20.1 wird eine Referenzspannung erzeugt, die nur noch eine geringe Abhängigkeit von der Versorgungsspannung U<sub>b</sub> besitzt.

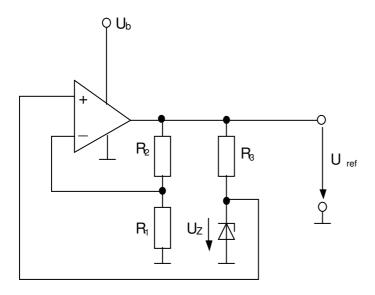
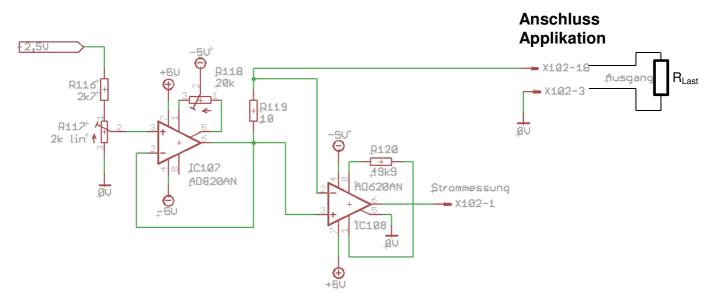



Bild 20.1

- 20.1 Berechnen Sie formelmäßig die Spannung U<sub>ref</sub> in Abhängigkeit der Widerstände und der Zenerspannung U<sub>z</sub>! (Der Operationsverstärker soll als ideal betrachtet werden)
- 20.2 Welche Aufgabe hat der Widerstand R<sub>3</sub>?
- 20.3 Die Versorgungsspannung beträgt  $U_b$  = 12 V. Die Zenerdiode hat eine Spannung  $U_Z$  = 2,7 V. Berechnen Sie den Widerstandswert für  $R_2$ , wenn  $R_1$  = 10 k $\Omega$  ist und  $U_{ref}$  = 5,0 V sein soll!
- 20.4.1 Der Strom durch die Zenerdiode darf nicht weniger als 1mA betragen. Welchen Widerstandswert kann R<sub>3</sub> maximal annehmen (E24-Reihe) ?


In Bild 21.1 ist eine einstellbare Präzisionsspannungsquelle dargestellt, die eine Applikation mit Energie versorgt.

Die Spannungsversorgung der Präzisionsspannungsquelle erfolgt extern mit +- 5 V und -2,5 V. Diese beiden Spannungen sollen durch ein geeignetes separates Netzteil zur Verfügung gestellt werden. Für eine geeignete Netzteilwahl müssen einige Abschätzungen gemacht werden.

Die Schaltung in Bild 21.1 besteht aus einer durch das Poti  $R_{117}$  angesteuerten Spannungsquelle Zusätzlich wird die Spannung über  $R_{119}$  gemessen zur Bestimmung des Laststroms durch  $R_{Last}$  ( $U_{mess} = R_{119} \cdot I$ ).

Die Last, die am Pin X102-1 angeschlossen wird, kann als hochohmig betrachtet werden.

- Schätzen sie mit Hilfe der Datenblätter der Operationsverstärker (gibt's auf der Herstellerseite im Internet) den "Worst Case" Strom der Schaltung ab (Gehen Sie davon aus, dass die Last am Anschluss "Applikation" im schlimmsten Fall nahe eines Kurzschlusses liegt, so dass der maximal vom OP zulässige Strom (Kurzschlussstrom) der Ausgangsstufe (X102-18) entnommen wird.
- Berechnen Sie außerdem die Verlustströme, die für die externe Beschaltung der OPs und für den Betrieb der OPs selber benötigt wird.
- Bestimmen Sie mit den bisherigen Ergebnissen den gesamten Leistungsverbrauch (P= U·I) der Schaltung nach Bild 21.1.



**Bild 21.1** 

Gegeben ist eine Schaltung nach Bild 22.1. Der Operationsverstärker besitzt ideale Eigenschaften. Die Widerstände haben folgende Werte:  $R_1$  = 10 k $\Omega$ ,  $R_2$  = 20 k $\Omega$ ,  $R_3$  = 50 k $\Omega$ ,  $R_N$  = 100 k $\Omega$ ,

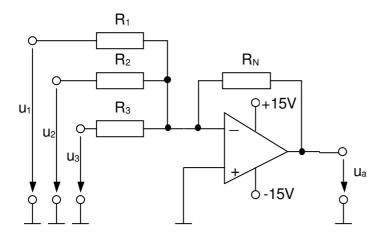



Bild 22.1

- 22.1 In welcher Grundschaltung wird der Operationsverstärker betrieben?
- 22.2 Geben Sie die Ausgangsspannung ua als Funktion der Eingangsspannungen u1 bis u3 an!
- 22.3 An den Eingängen liegen die in Bild 22.2 skizzierten Spannungen  $u_1$ ,  $u_2$  und  $u_3$  an: Skizzieren Sie die Ausgangsspannung  $u_a$ !

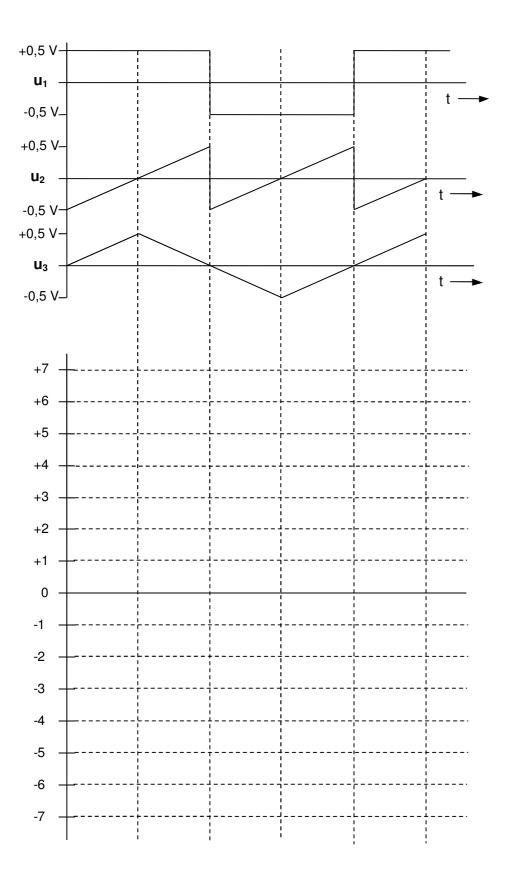



Bild 22.2





Leiter: Prof. Dr. rer. nat. habil. Michael Siegel

Hertzstr. 16 D-76187 Karlsruhe

Telefon: +49 608 44961
Fax: +49 757925
E-Mail: info@ims.kit.edu
Web: http://www.ims.kit.edu

### Lösungen zum Tutorium 4 in Elektronische Schaltungen

| Name:   | Vorname: | Matr.Nr.: |
|---------|----------|-----------|
|         |          |           |
| Cruppo: |          |           |
| Gruppe: |          |           |

Lösung Aufgabe 21 Lösung Aufgabe 22.1-22.2