



# Elektrotechnisches Grundlagenpraktikum

## Gleichstromsteller

- Tiefsetzsteller
- Inverswandler
- Hochsetzsteller

# Inhaltsverzeichnis

| 1   | Lern    | ziele                                                                  | 3    |
|-----|---------|------------------------------------------------------------------------|------|
| 2   | Liter   | atur                                                                   | 3    |
| 3   | Gerä    | te                                                                     | 3    |
| 4   | Theo    | retische Grundlagen                                                    | 4    |
|     | 4.1     | Vorwort                                                                | 4    |
|     | 4.2     | Einleitung                                                             | 4    |
|     | 4.3     | Prinzip des Durchfluss- oder Drossel-Abwärtswandlers (Tiefsetzsteller) | 7    |
|     |         | 4.3.1 Siebwirkung durch ein L-R-Tiefpass                               | 8    |
|     |         | 4.3.2 Realisierung des Tiefsetzstellers (Drossel-Abwärtswandler)       | . 11 |
|     |         | 4.3.2.1 Bestimmung der Ausgangsspannung des Tiefsetzstellers           | . 13 |
|     | 4.4     | Drossel-Inverswandler                                                  |      |
|     | 4.5     | Drossel-Aufwärtswandler (Hochsetzsteller)                              |      |
| _   | -       |                                                                        | . 10 |
| 5   | Durc    | hführung des Versuchs                                                  | 19   |
|     | 5.1     | Differenztastkopf                                                      |      |
|     | 5.2     | PWM-Generator                                                          | . 20 |
|     | 5.3     | Aufgabe 1: Parameter des PWM-Generators                                | . 21 |
|     | 5.4     | Die Gleichstromsteller-Box                                             | . 21 |
|     | 5.5     | Aufgabe 2: Kennwerte des Leistungstransistors                          |      |
|     | 5.6     | Der Tiefsetzsteller                                                    | . 22 |
|     | 5.7     | Aufgabe 3: Stromverläufe am Tiefsetzsteller                            | . 22 |
|     | 5.8     | Aufgabe 4: Kennlinienbestimmung des MOSFETS                            | . 26 |
|     | 5.9     | Aufgabe 5: Tiefsetzsteller ohne Glättungskondensator                   |      |
|     | 5.10    | Aufgabe 6: Tiefsetzsteller mit Glättungskondensator                    |      |
|     | 5.11    | Aufgabe 7: Bestimmung des Wirkungsgrades des Tiefsetzstellers          | 30   |
|     |         | Aufgabe 8: Drossel-Inverswandler ohne Glättungskondensator             |      |
|     | 5.13    | Aufgabe 9: Drossel-Inverswandler mit Glättungskondensator              | 34   |
| ETC | GP - Ve | ersuchsfeedback                                                        | 37   |
| Anh | ang A   | Auszug aus dem Datenblatt IPP200N15N3G                                 | 39   |

# 5 Durchführung des Versuchs

Der Gleichstromsteller Versuch ist einer der anspruchsvollsten im Praktikum. Sie können sehr schnell einen Kurzschluss produzieren und dadurch z. B. den Leistungstransistor zerstören. Gehen Sie daher mit besonderer Sorgfalt beim Aufbau vor.

#### Frage 1:

Welche Gleichstromsteller können gefährlich hohe Spannungen erzeugen? Wie vermeiden Sie dies?

Antwort:
Diessel-Inverswandler, Hochsetzsteller
-> magliebat niedrigahmige Last anschließen

Oszillografieren Sie immer mit den angeschlossenen Differenztastköpfen, da Sie damit an jeder beliebigen Stelle der Schaltung Messungen vornehmen können ohne einen Kurzschluss über die Masseverbindung des Oszilloskopes zu verursachen.



## 5.1 Differenztastkopf

Bild 5.1 zeigt den Differenztastkopf. Sowohl bei Kanal 1 als auch Kanal 2 des Oszilloskops ist in diesem Versuch ein Differenztastkopf vorgeschalten. Wie Sie bereits wissen, können Sie im 2-Kanalbetrieb mit dem Oszilloskop nur bezüglich einer gemeinsamen Masse Signale erfassen, weil die Massen beider Kanäle im Oszilloskop verbunden sind. Durch die Vorschaltung der Differenz-

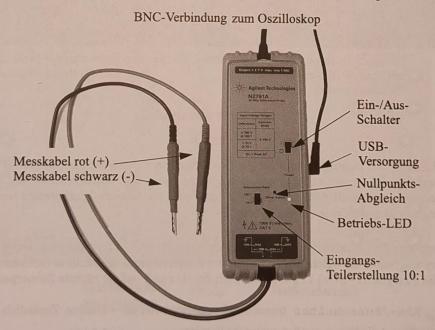



Bild 5.1 Differenztastkopf

tastköpfe entfällt diese Einschränkung, da der Tastkopf das über die Messkabel erfasste Signal anpasst.



Stellen Sie die Eingangsteiler der Differenztastköpfe auf 10:1.

Damit Sie auf dem Oszilloskop die richtige Spannung ablesen vergewissern Sie sich, dass im Channel Menü (CH1 bzw. CH2) die Einstellung Probe jeweils auf \*10 steht.

#### 5.2 PWM-Generator

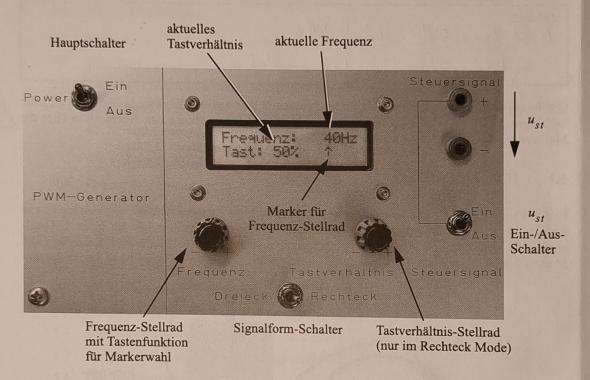



Bild 5.2 PWM Generator

Bild 5.2 zeigt den Signalgenerator für die Erzeugung einer pulsweitenmodulierten (PWM) Rechteckspannung zur Ansteuerung des Leistungstransistors des Gleichstromstellers. Neben dem Rechtecksignal mit variablem Tastverhältnis kann auch ein Dreiecksignal erzeugt werden, je nach Stellung des Signalform-Schalters.

Die Frequenz des Steuersignales ist über das Frequenz-Stellrad änderbar. Der Marker ↑ im Display zeigt dabei an, welche Zehnerpotenz der Frequenz durch das Stellrad verändert wird. Drückt man das Frequenz-Stellrad, so wechselt der Marker auf die nächste Zehnerpotenz.

Der  $u_{st}$  Ein-/Ausschalter trennt das Steuersignal von der + Buchse. Zusätzlich blinkt bei getrenntem Signal die "Frequenz:"-Anzeige im Display.



Schalten Sie das Steuersignal immer ab, während Sie eine Schaltung auf-/umbauen.

## 5.3 Aufgabe 1: Parameter des PWM-Generators

Machen Sie sich mit der Funktionsweise des PWM-Generators vertraut, indem Sie  $u_{st}$  oszillografieren und die folgenden Minimal- und Maximalparameter ermitteln:

| Signalform | min. Frequenz  f <sub>min</sub> / Hz | max. Frequenz  f <sub>max</sub> / Hz | min.<br>Tastverhältnis<br>9 <sub>min</sub> / % | max. Tastverhältnis 9 <sub>max</sub> / % | Amplitude $u_{ss}/V$ bei $f_{min}$ | Amplitude $u_{ss}/V$ bei $f_{max}$ |
|------------|--------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------|------------------------------------|
| Rechteck   | 40                                   | 6003000                              | 5%                                             | 95%                                      | 5,4                                | 5,4                                |
| Dreieck    | 40                                   | 600                                  |                                                |                                          | 5.8                                | 3344                               |

## 5.4 Die Gleichstromsteller-Box



Bild 5.3 zeigt die Frontplatte der Versuchsbox für den Gleichstromsteller. Das Steuersignal  $u_{st}$  und die Versorgungsspannung  $+U_{in}$  werden an der linken Seite eingespeist. In der oberen Hälfte ist der Aufbau für den Tiefsetzsteller, in der unteren Hälfte der für den Inverswandler.

Sie können immer nur einen der beiden Wandler aufbauen, da Diode, Speicherdrossel und Siebkondensator physikalisch nur einmal in der Box vorhanden sind, aber intern mehrfach entsprechend der Schaltsymbole auf die Steckbuchsen verdrahtet wurden.



Rechts befinden sich unterschiedliche Lastwiderstände.

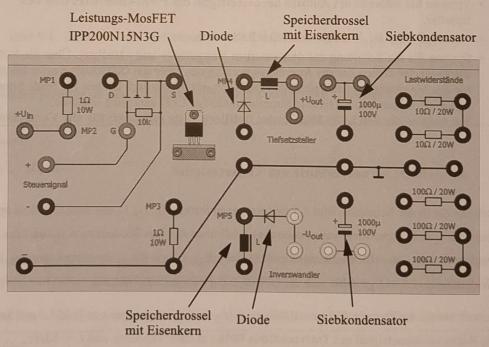



Bild 5.3 Frontplatte der Gleichstromsteller-Box

## 5.5 Aufgabe 2: Kennwerte des Leistungstransistors

Im Anhang A ab Seite 39 finden Sie einen Auszug aus dem Datenblatt des Leistungstransistors. Entnehmen Sie die Schwellspannungen  $V_{GS(th)}$ , bei denen der Transistor voll leitet bzw. sicher sperrt. Wie groß ist der maximale Drain-Source-Widerstand  $R_{DS}$ , wenn der Transistor leitet?

Antwort:

Transistor sperrt sicher für:

 $V_{GS(th)} \ll 42 V$ 

Transistor leitet voll für:

 $V_{GS(th)} \ge 4$  V

 $R_{DS} = 6,02 \Omega$ 

Vergleichen Sie die Schwellspannungen mit dem Aussteuerbereich der Steuerspannung  $u_{st}$  des PWM-Generators.

#### 5.6 Der Tiefsetzsteller

Bauen Sie die Schaltung des Tiefsetzstellers nach Bild 5.4 auf Seite 23 auf.

### Hinweise:



- Trennen Sie während des Aufbaus das Steuersignal des PWM-Generators über den Schalter.
- Verwenden Sie  $R_L = 50\Omega = 100\Omega \parallel 100\Omega$  als Last.
- Speisen Sie die Schaltung aus dem externen Netzgerät (+ und Buchse). Über die VOL-TAGE-Regler stellen Sie die Ausgangsspannung ein. Über die CURRENT-Regler können Sie den Maximalstrom einstellen, den das Netzgerät liefern darf. Drehen Sie beide Stromregler ganz nach rechts. Die rote Strombegrenzungs-LED darf nicht leuchten.

Verwenden Sie den LOW-AMP Modus (mittlere Taste gedrückt) für alle Versuche!

## 5.7 Aufgabe 3: Stromverläufe am Tiefsetzsteller

Messen Sie die in der Schaltung Bild 5.4 eingetragenen Ströme  $i_L$ ,  $i_D$ ,  $i_T$  mit dem Oszilloskop. Der Spulenstrom  $i_L$  ist proportional zum Spannungsabfall über  $R_L$ , der Diodenstrom  $i_D$  und der Transistorstrom  $i_T$  kann aus der Spannungsmessung über  $R_{MP1}$  und  $R_{MP3}$  bestimmt werden. Durch den Widerstandswert  $1\Omega$  gestaltet sich die Umrechnung entsprechend einfach.

Skizzieren Sie die auftretenden Stromverläufe  $i_L$ ,  $i_T$ ,  $i_D$  in die Diagramme von Bild 5.5 auf Seite 24 für ein Rechteck-Steuersignal mit **Tastverhältnis 50%** bei einer Frequenz von f=50Hz.

Wiederholen Sie die Messung für f=200Hz und skizzieren Sie  $i_L$ ,  $i_T$ ,  $i_D$  in die Diagramme in Bild 5.6 auf Seite 25.

#### Hinweise:

- Überlegen Sie sich für die Messung der Ströme welche Eingangsverstärkung (V/DIV) am Oszilloskop einzustellen ist, damit Sie den Signalverlauf 1:1 in die bereitstehenden Diagramme übertragen können, da Sie ja mit dem Oszilloskop nur eine zum Strom proportionale Spannung messen können.
- Erfassen Sie  $u_{st}$  mit CH1 und triggern Sie so, dass Sie den Verlauf wie in den Diagrammen vorgegeben erhalten.
- Erfassen Sie mit CH2 die zum jeweiligen Strom proportionale Spannung.

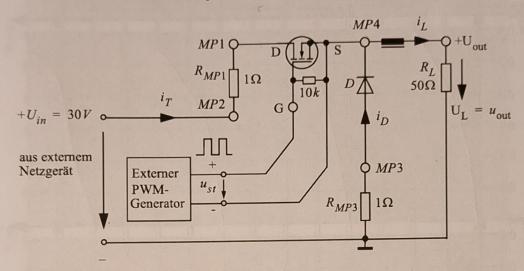
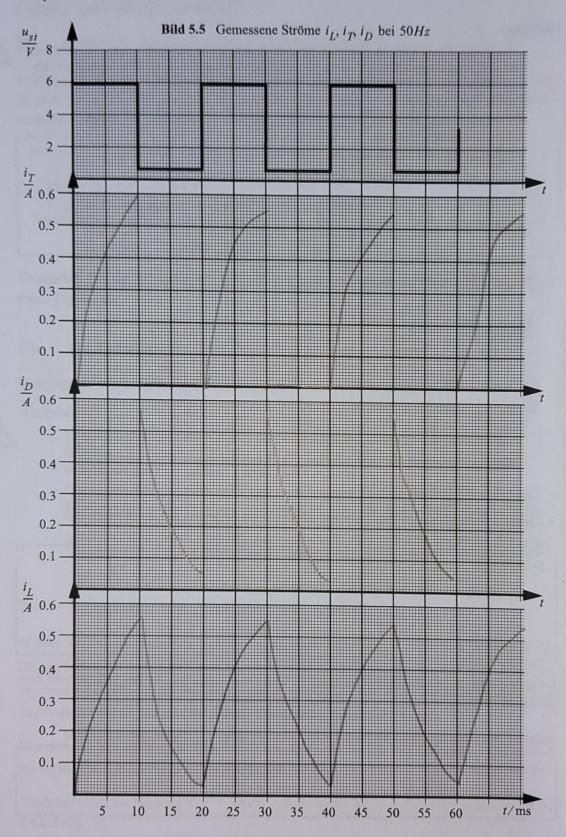
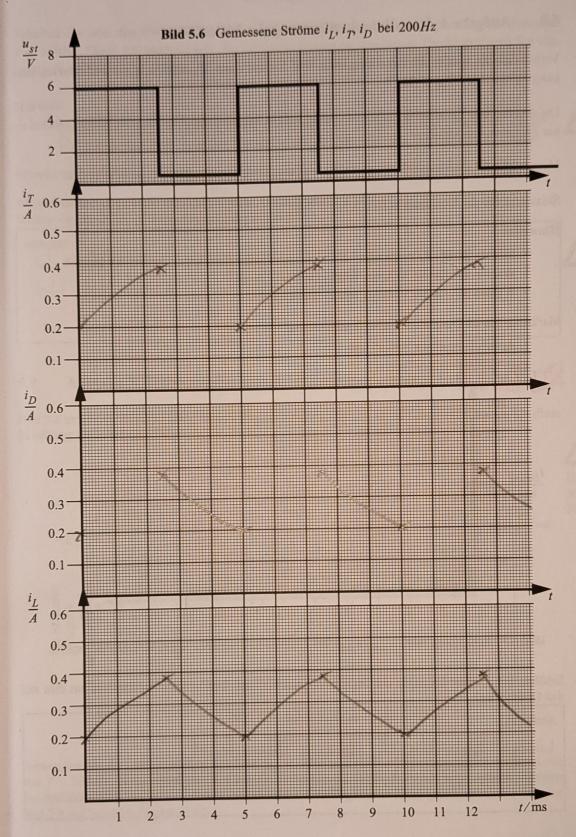



Bild 5.4 Schaltbild des Tiefsetzstellers mit Messwiderständen  $R_{\mathrm{MP1}}$  und  $R_{\mathrm{MP3}}$ 

Bei welcher Schaltphase des Transistors erreicht der Diodenstrom  $i_D$  seinen Maximalwert?


Warum?


Taus, da nur in dieser Phase Strom isser die Diode fließt Antwort:

Erhöhen Sie nun probeweise die Frequenz auf 1-2kHz und beobachten Sie die Änderung der Restwelligkeit von Ausgangsspannung  $u_{\text{out}}$  bzw. Ausgangsstrom  $i_L$ .

Welche Proportionalität zwischen Frequenz und Restwelligkeit  $\Delta i_L$  können Sie feststellen?

Antwort:  $\Delta i_L \sim \frac{1}{L}$ 



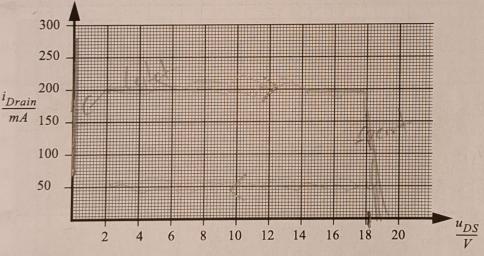


# 5.8 Aufgabe 4: Kennlinienbestimmung des MOSFETS

Verwenden Sie wieder die Schaltung nach Bild 5.4 auf Seite 23, allerdings mit reduzierter Eingangsspannung  $+U_{in}=18V$ .

Die Ansteuerung mittels des PWM-Generators sei ein Rechtecksignal mit Tastverhältnis 50% bei einer Frequenz von 150Hz.

Messen Sie nun die Kennlinie  $i_{Drain} = i_T = f(u_{DS})$  mit dem Oszilloskop im XY-Betrieb.


Skizzieren Sie die Kennlinie in Bild 5.7.

#### Hinweise:

- Mittels VERT X/Y-Taste XY versetzen Sie das Oszilloskop in den XY-Betrieb
- Wählen Sie für die X-Achse (CH1) 2V/DIV
- Wählen Sie für die Y-Achse (CH2) 50mV/DIV

Markieren Sie im Diagramm die beiden Zustände:

- · A. Schalttransistor "leitet" und
- · B. Schalttransistor "sperrt"

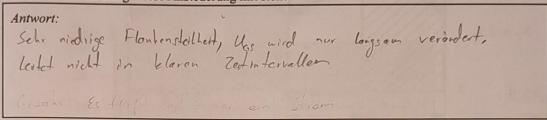


**Bild 5.7** Schaltkennlinie  $i_{Drain}(u_{DS})$  bei 150Hz. A. Transistor leitet, B. Transistor sperrt.

Erhöhen Sie nun die Frequenz der Steuerspannung bis max. 2 kHz. Welchen Einfluss hat dies auf den Drainstrom?

Antwort: Weniger Restwelligheat, Kleineres Stromintarial Schalten Sie jetzt den PWM-Generator auf eine dreieckförmige Ausgangsspannung der Frequenz f=150Hz. Diese Ansteuerung soll eine schlechte Steuerung simulieren. Oszillografieren Sie wieder die Kennlinie  $i_{Drain}=f(u_{DS})$ .

#### Hinweis:


• Drehen Sie den Intensitätsregler am Oszilloskop auf Maximum, dann erkennen Sie die Übergangswege vom leitenden Zustand in den Sperrzustand des Transistors und zurück.



jetzt

Skizzieren Sie die Übergangswege mit Richtungsangabe (Pfeil) in das Diagramm in Bild 5.7.

Warum handelt es sich um eine ungeeignete Ansteuerung? Welche Gefahren bringt diese Ansteuerung mit sich?



## 5.9 Aufgabe 5: Tiefsetzsteller ohne Glättungskondensator



Bild 5.8 zeigt das Schaltbild des Tiefsetzstellers ohne zusätzliche Messwiderstände. Bauen Sie diese Schaltung zunächst ohne Masseverbindung (- - -) zum Kondensator auf.

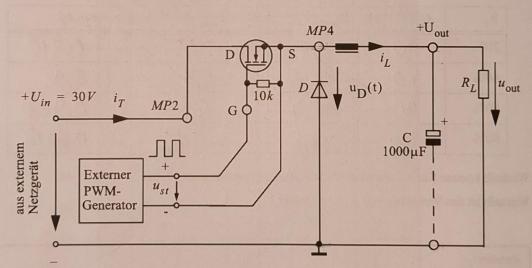
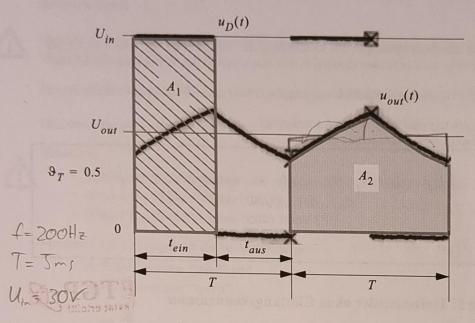




Bild 5.8 Schaltbild des Tiefsetzstellers

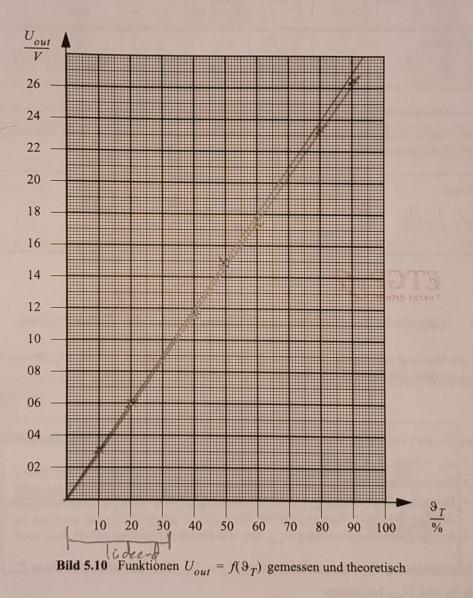
Verwenden Sie als Lastwiderstand den Wert  $R_L = 50\Omega$  und ein Rechtecksteuersignal der Frequenz von f = 200 Hz. Oszillografieren Sie nun die Diodenspannung  $u_D(t)$  und die Ausgangsspannung des Tiefsetzstellers  $u_{out}(t)$ , wobei sich die beiden Oszillogramme überlagern sollen, wie dies im Bild 5.9 auf Seite 28 dargestellt ist.

Berechnen Sie die Spannungs-Zeitflächen  $A_1$  für die in der Tabelle gegebenen Tastverhältnisse  $\vartheta_T$ . Bestimmen Sie anschließend mit dem Multimeter im Gleichspannungsbereich durch Messen von  $u_{out}(t) = U_{out}$  die Spannungs-Zeitflächen  $A_2$ .



**Bild 5.9** Überlagerung der Oszillogramme  $u_D(t)$  und  $u_{out}(t)$ 

| $\vartheta_T$ | $A_1 [V \cdot ms]$ | $U_{out}$ [V] | $A_2 = U_{out} \cdot T \left[ V \cdot ms \right]$ | $A_2/A_1$ |
|---------------|--------------------|---------------|---------------------------------------------------|-----------|
| 20%           | 30                 | 515           | 27,5                                              | 0,916     |
| 40%           | 60                 | 11,6          | 58                                                | 0,96      |
| 60%           | 90                 | 4,7           | 885                                               | 0,983     |
| 80%           | 120                | 23,8          | 119                                               | 0,9316    |


Weshalb können Sie  $A_2$  aus einer Gleichspannungsmessung bestimmen? Weshalb ist das Verhältnis von  $A_2/A_1$  kleiner 1?

## 5.10 Aufgabe 6: Tiefsetzsteller mit Glättungskondensator

Schließen Sie jetzt den Glättungskondensator C an (gestrichelte Verbindung in der Schaltung nach Bild 5.8). Wählen Sie  $R_L=100\Omega$  sowie f=200Hz und messen Sie die Ausgangsspannung  $U_{out}$  mit dem Digitalmultimeter im Gleichspannungsbereich. Tragen Sie in das Lösungsdiagramm Bild 5.10 die Messwerte  $U_{out}=f(\vartheta_T)$  ein und skizzieren Sie anschließend in dasselbe Diagramm die theoretisch zu erwartende Kurve nach Gl. (4.15) auf Seite 14.

**Hinweis:** Überprüfen Sie  $U_{in}$  mit dem Multimeter und stellen Sie bestmöglichst  $U_{in}=30.00\,V$  ein





Bestimmen Sie nun den Bereich der Kennlinie in dem der Steller in lückendem Betrieb arbeitet, d. h.  $i_L = 0$  wird. Oszillografieren Sie dazu  $u_D(t)$ . Kennzeichnen Sie die Grenze zum lückenden Betrieb in Bild 5.10.

Welcher Spannung folgt  $u_D(t)$  während des lückenden Betriebs? Warum?

Hinweis: Überlegen Sie sich welches Bauteil die Energiequelle im lückenden Betrieb ist.



lückender Betrieb: 
$$u_D(t) = U_{out} - U_{\ell}$$

Begründung:

Antwort:

Warum weicht die Kurve der gemessenen, realen Ausgangsspannung im nicht lückenden Betrieb von der theoretischen ab?

Antwort:



## 5.11 Aufgabe 7: Bestimmung des Wirkungsgrades des Tiefsetzstellers

Über die Messung der zugeführten Leistung aus dem Labornetzgerät und der abgeführten Leistung in die Last lässt sich der Wirkungsgrad des Stellers ermitteln:

$$\eta = P_{out}/P_{in}$$
 Gl. (5.1)

Messen Sie die Leistung für verschiedene Verbraucher  $R_L$ . Verwenden Sie folgende Anordnung:

- $\vartheta_T = 50\%, f = 200Hz$
- $\bullet$  Glättungskondensator C angeschlossen
- Eingangsstrommessung  $I_T$  mit einem eingeschleiften Multimeter im 10A Bereich, da die Anzeige des Netzgerätes zu ungenau ist
- Ausgangsspannungsmessung  $U_{out}$  mit Multimeter

Die Eingangsleistung  $P_{in}$  erhalten Sie dann zu  $P_{in} = U_{in} \cdot I_T$ . Die Ausgangsleistung  $P_{out}$  können sie aus  $R_L$  und  $U_{out}$  bestimmen.

Wie lautet die Beziehung zwischen  $P_{out}, R_L$  und  $U_{out}$ ?

| $R_L/\Omega$ | $U_{in}/V$ | $I_T/A$ | $P_{in}/W$ | $U_{out}/V$ | Pout/W | $\eta = P_{out}/P_{in}$ |
|--------------|------------|---------|------------|-------------|--------|-------------------------|
| 100          | 30.0       | 0,08    | 2,78       | 14,6        | 2,13   | 0,934                   |
| 50           | 30.0       | 0,15    | 4,5        | 14,5        | 4,2    | 0,934                   |
| 20           | 30.0       | 0,36    | 10,800061  | 14,2        | 10,08  | 0,933                   |
| 10           | 30.0       | 0,7     | 21         | 13,8        | 19,04  | 0,907                   |
| 5            | 30.0       | 1,4     | 42         | 13,1        | 343    | 0,817                   |

Weshalb sinkt der Wirkungsgrad bei kleiner werdendem  $R_L$ ? Was könnten Sie dagegen tun?



Die nun nachfolgenden Aufgaben werden mit dem Sperrwandler durchgeführt. Daher nochmals folgende Warnung:

## Warnung!

Durch das Sperrwandlerprinzip können sehr hohe Induktions-Spannungsspitzen entstehen, wenn keine Last am Wandler angeschlossen ist. Seien Sie in jedem Fall vorsichtig, da diese durchaus wegen der freien Verkabelung des Versuchsaufbaus auch für Sie gefährlich sein können!



## 5.12 Aufgabe 8: Drossel-Inverswandler ohne Glättungskondensator

Bild 5.11 zeigt die Gesamtschaltung des Drossel-Inverswandlers. Entfernen Sie alle Verbindungen der vorherigen Tiefsetzsteller-Schaltung, einschließlich des eingeschleiften Multimeters und bauen Sie die Inverswandler-Schaltung in der unteren Hälfte der Versuchsbox auf. Der Drossel-Inverswandler hat diesen Namen, da seine Ausgangsspannung  $u_{out}$  negativ ist.

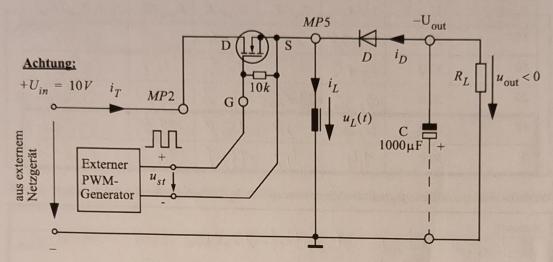



Bild 5.11 Gesamtschaltung des Drossel-Inverswandlers



Beachten Sie, dass die Versorgungsspannung jetzt nur  $U_{in} = 10.0V$  beträgt.

Zunächst soll der Kondensator C nicht angeschlossen sein. Wählen Sie  $R_L = 50\Omega$  und f = 200Hz.

Oszillografieren Sie dann die Spannung  $u_L(t)$  an der Spule und die Ausgangsspannung  $u_{out}(t)$  des Stellers so, dass beide Diagramme einander überlagern (s. Bild 5.12).

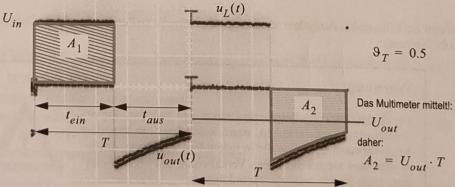



Bild 5.12 Spannungs-Zeit-Flächen des Drossel-Inverswandlers

Überprüfen Sie, wie sich bei verschiedenen Tastverhältnissen  $\vartheta_T = t_{ein}/T$  die Flächen  $A_1$  und  $A_2$  zueinander verhalten. Bestimmen Sie die Fläche  $A_2$  mit dem Multimeter und tragen Sie Ihre Messund Rechenergebnisse in die folgende Tabelle ein. Beachten Sie, dass  $u_{out}$  negativ ist und dass das Multimeter den zeitlichen Mittelwert  $U_{out} = \bar{u}_{out}$  anzeigt. Die Spannungs-Zeitfläche  $A_2$  (s. auch Bild 5.12) berechnet sich daher zu  $A_2 = U_{out} \cdot T$ .

| $\vartheta_T$ | $A_1 [V \cdot ms]$ | Uout [V] | $A_2 =  U_{out} \cdot T  [V \cdot ms]$ | $A_2/A_1$ |
|---------------|--------------------|----------|----------------------------------------|-----------|
| 20%           | 10                 | -1,57    | 7,85                                   | 0,785     |
| 40%           | 20                 | -3,6     | 18                                     | 0,3       |
| 60%           | 30                 | -5,6     | 28                                     | 0,93      |
| 80%           | 40                 | -7.5     | 37,5                                   | 0,94      |

Das Verhältnis der Spannungs-Zeitflächen beim Inverswandler ist deutlich kleiner als beim Tiefsetztsteller.

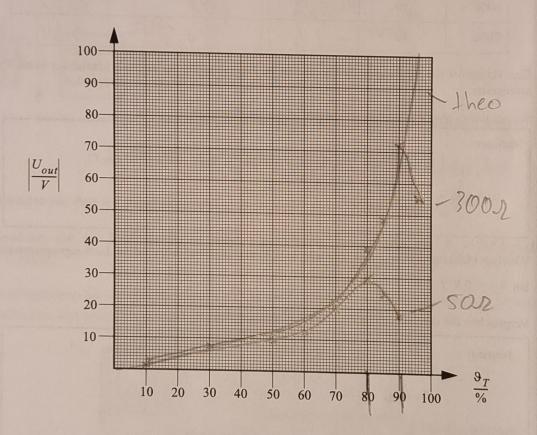
Was sagt dies über den Wirkungsgrad des Inverswandlers aus?

Welchen Maximalwert  $|u_{out}|_{max}$  (zu messen mit dem Oszilloskop!) erreicht die Ausgangsspannung bei  $\vartheta_T=0.8$ ?

Vergleichen Sie den Wert mit der Höhe der Eingangsspannung  $U_{in}$ .

Antwort:
$$|u_{out}|_{max} = 42.6V \approx 4.4$$

# 5.13 Aufgabe 9: Drossel-Inverswandler mit Glättungskondensator


Schließen Sie nun den Glättungskondensator mit der Kapazität C nach Bild 5.11 an (gestrichelte Verbindung). Vermessen Sie die Kennlinie der Ausgangsspannung als Funktion des Tastverhältnisses  $\left|U_{out}\right|=f(\vartheta_T)$  für a)  $R_L=50\Omega$  und b)  $R_L=300\Omega$ , jeweils bei f=200Hz.

Zeichnen Sie die Kennlinien in das Diagramm in Bild 5.13 ein.



Prüfen Sie, ob die Strombegrenzung des Netzgerätes auf LOW steht und beide Current Regler maximal aufgedreht sind! Kennzeichnen Sie in Ihrem Diagramm den Bereich, ab dem die Strombegrenzung des Netzgerätes einsetzt.

Tragen Sie nach der Messung auch die theoretische Kurve für  $U_{ein} = 10V$  in Bild 5.13 ein.



**Bild 5.13** Funktionen  $|U_{out}| = f(\vartheta_T)$  am Drossel-Inverswandler für a)  $R_L = 50\Omega$  und b)  $R_L = 300\Omega$  sowie theoretisch c)

1. Warum weichen die Kurven der realisierten Ausgangspannungen von der theoretisch möglichen ab? (Berücksichtigen Sie das Schaltungsprinzip und was real für  $\vartheta_T=100\%$  passiert)

2. Der Drossel-Inverswandler hat einen geringeren Wirkungsgrad als der Durchflusswandler (Tiefsetzsteller). Wie ist dies zu erklären? (Denken Sie an die Art des Energietransports von der Quelle (Netzgerät) zur Last.)

Antwort:

- zu 1. Strombegrenzung vom Netzteil, Verluste
- zu 2. Wenn Transistor leutet theor. Vurzsolles tes Energie bommt nur indiralet viber die finle