Experimentalphysik A für Chemie- und Elektroingenieure

VON
FRANK FRENZEL
KARSTEN KÖTH
HARTMUT KUTTRUF

Was wir wissen ist ein Tropfen, was wir nicht wissen ein Ozean. (Isaac Newton)

Inhaltsverzeichnis

	0.1	Vorwo	rt	7
	0.2	Inhalt	Teil B	7
	0.3	griechi	sche Buchstaben	8
	0.4	Zehner	potenzen	8
1	Me	chanik		9
	1.1	Kinem	atik des Punktes	9
		1.1.1	Geschwindigkeit	9
		1.1.2	Beschleunigung	0
		1.1.3	Die gleichförmig beschleunigte Bewegung	1
		1.1.4	Bewegungen in zwei oder drei Dimensionen	2
	1.2	Grund	gesetze der klassischen Mechanik	4
		1.2.1	Die drei Newtonschen Axiome	4
		1.2.2	Trägheitsprinzip und Inertialsysteme	
			(Erstes Newtonsches Axiom)	4
		1.2.3	Kraft, Masse und Impuls	
			(Zweites Newtonsches Axiom)	5
		1.2.4	Kraft und Gegenkraft, Schwerelosigkeit	
			(Drittes Newtonsche Axiom)	6
		1.2.5	Die Äquivalenz von schwerer und träger Masse	6
		1.2.6	Reibungskräfte	6
	1.3	Drehbe	ewegung / Rotation	7
		1.3.1	Kinematik der Drehbewegung	7
		1.3.2	Scheinkräfte im gleichförmig rotierenden Bezugssystem 1	9
	1.4	\mathbf{Arbeit}	, Leistung, Energie und Kräfte	0
		1.4.1	Arbeit	0
		1.4.2	Leistung und Wirkungsgrad	1
		1.4.3	Potentielle Energie	1
		1.4.4	Kinetische Energie	3
		1.4.5	Der Energieerhaltungssatz (EES)	3
		1.4.6	konservative und nicht konservative Kräfte	3
		1.4.7	Kraft und Potential	3
	1.5	Schwin	gungen	4
		1 5 1	Die harmonische Schwingung	4

	1.5.2	Die harmonische Schwingung einer Hookschen Feder	25
	1.5.3	Energieerhaltung bei einer harmonischen Schwingung	25
	1.5.4	Das mathematische Pendel	26
1.6	Impul	serhaltung und Stoßgesetze	26
	1.6.1	Der Impulserhaltungssatz	26
	1.6.2	Der Schwerpunkt (oder Massenmittelpunkt)	26
	1.6.3	gerader, elastischer Stoß	27
	1.6.4	gerader, zentraler inelastischer Stoß	27
	1.6.5	nicht zentraler Stoß mit $m_1 = m_2$	28
1.7	Die Pl	hysik der Drehbewegung	28
	1.7.1	Drehbewegung eines Massenpunktes	28
	1.7.2	kinetische Energie	29
	1.7.3	Leistung	29
	1.7.4	Hebelgesetz	30
	1.7.5	Formulierung des 2. Newtonschen Gesetzes für die Drehbe-	
		wegung	30
	1.7.6	Gegenüberstellung von Translation und Rotation	31
	1.7.7	Der Drehimpulserhaltungssatz	31
1.8	Die M	echanik starrer Körper	32
	1.8.1	Trägheitsmoment ausgedehnter Körper	32
	1.8.2	Der Satz von Steiner	33
	1.8.3	Zylinder auf schiefer Ebene	34
	1.8.4	Translation und Rotation rollender Körper	34
	1.8.5	vektorielle Schreibweise bei Drehbewegungen	35
	1.8.6	Der Kreisel	35
	1.8.7	Gleichgewicht am starren Körper	37
	1.8.8	Hooksches Gesetz der Torsion, Drehschwingung	38
1.9	Gravit	tation und Keplersche Gesetze	39
	1.9.1	Das Newtonsche Gravitationsgesetz	39
	1.9.2	Feldstärke, Potential und potentielle Energie im Gravitations-	
		feld	39
	1.9.3	Bestimmung der Gravitationskonstanten γ	40
	1.9.4	Planetenbahnen und Keplersche Gesetze	40
	1.9.5	Gebundene und ungebundene Zustände	41
1.10	Deform	nation fester Körper	41
	1.10.1	Dehnung und Zugversuche	41
	1.10.2	Spannung, Dehnung und Hooksches Gesetz	42
	1.10.3	Querkontraktion	43
	1.10.4	Kompressibilität	44
	1.10.5	Scherung und Torsion	44
	1.10.6	Elastische Energie und Energiequelle	46
1.11	Ruhen	de Flüssigkeiten und Gase (Hydrostatik und Aerostatik)	46
	1.11.1	Druck in ruhenden Flüssigkeiten (ohne Gravitation)	46

		1.11.2	Gravitation bei Flüssigkeiten: der Schweredruck	47
		1.11.3	Auftrieb; Prinzip von Archimedes	47
		1.11.4	p(h) bei Gasen: die barometrische Höhenformel	48
		1.11.5	Oberflächenspannung und Kapillarität	49
	1.12	Ströme	ende Flüssigkeiten und Gase (Hydrodynamik und Aerodynamik)	50
		1.12.1	Die Kontinuitätsgleichung (inkompressible Strömung)	50
		1.12.2	Potentielle und kinet. Energie in strömenden Medien: die	
			Bernoulli-Gleichung	51
		1.12.3	Viskose Strömung zwischen Platten	53
		1.12.4	Laminare Strömung durch Rohre; das Gesetz von Hagen-	
			Poiseuille	53
		1.12.5	Stokesche Reibung einer Kugel	54
		1.12.6	Turbulente Strömung und Reynolds-Zahl	54
		1.12.7	Luftwiderstand und c_w -Wert	55
		_		_
2		wingur		57
	2.1		ınd erzwungene Schwingungen	58
		2.1.1	Schwingungsarten	58
		2.1.2	Die Bewegungsgleichung	58
		2.1.3	Differentialgleichungen	58
		2.1.4	Der harmonische Oszillator	59
		2.1.5	Gegenüberstellung verschiedener	
			harmonischer Schwingungen	59
		2.1.6	Der freie, gedämpfte Oszillator	60
		2.1.7	Erzwungene Schwingungen und Resonanz	62
		2.1.8	Einschwingvorgänge	63
	2.2	Überla	gerung von Schwingungen	63
		2.2.1	Überlagerung paralleler Schwingungen	63
		2.2.2	Überlagerung orthogonaler Schwingungen	65
		2.2.3	Fourier-Synthese und Fourier-Analyse	67
		2.2.4	Gekoppelte Schwingungen	67
3	Wel	llen		71
Ū	3.1		chwingungen zu Wellen	71
	3.2		ellengleichung	72
	3.3		narten	72
	3.3	3.3.1	Longitudinale Wellen	72
		3.3.2	Transversale Wellen	72
		3.3.3	Ebene- und Kugelwellen	72
		3.3.4	Beugung und Huygenssches Prinzip	72
		3.3.5	Stehende Wellen	73
	3.4		el einer mechanischen Welle	74
	3.5	_	etransport durch die Welle	75
	3.6		opplereffekt	75

	3.7	Kohär	enz und Interferenz	76
	3.8	Disper	rsion	76
		_		
Ŀ			ynamik	77
	4.1		eenergie und Temperatur	77
		4.1.1	Temperatur und der Nullte Hauptsatz	77
		4.1.2	Temperaturskala / absoluter Nullpunkt	77
		4.1.3	Wärmeausdehnung	78
		4.1.4	Technische Verfahren zur Temperaturmessung	79
		4.1.5	Wärmeenergie und spezifische Wärme	79
		4.1.6	Phasenumwandlungen und latente Wärme	79
		4.1.7	Phasendiagramme	80
		4.1.8	Ideale und reale Gase	81
		4.1.9	Die Zustandsgleichung für ideale Gase	82
	4.2	Mikro	skopische Definition des idealen Gases	82
		4.2.1	kinetische Gastheorie	83
		4.2.2	Maxwellsche Geschwindigkeitsverteilung	84
	4.3	Partia	ldruck, Dampfdruck, Luftfeuchtigkeit	85
		4.3.1	Daltonsches Gesetz der Partialdrücke	85
		4.3.2	Dampfdruck	85
		4.3.3	Siedepunkt	85
		4.3.4	Relative Luftfeuchtigkeit im Taupunkt	85
	4.4	Reale	Gase: van der Waalsche Zustandsgleichung	86
	4.5	$_{ m Joule}$	- Thomson - Effekt und Gasverflüssigung nach Linde	86
	4.6	Zustai	ndsänderungen und Kreisprozesse idealer Gase	87
		4.6.1	Der erste Hauptsatz der Thermodynamik	87
		4.6.2	Die spezifischen Molwärmen C_p und C_v idealer Gase	87
		4.6.3	Zustandsänderungen idealer Gase	88
		4.6.4	Der Carnotsche Kreisprozeß	91
		4.6.5	Energiebilanz und Wirkungsgrad der Carnot - Maschine	93
		4.6.6	Die rückwärts laufende Carnot - Maschine	94
		4.6.7	Stirling - Prozeß und Heißluftmotor	95
		4.6.8	Technische Kühlschränke und Wärmepumpe	95
		4.6.9	Transport von Wärmeenergie	96
	4.7		pie und der zweite Hauptsatz	96
		4.7.1	Formulierung des zweiten Hauptsatzes	96
		4.7.2	Reversible und irreversible Prozesse	97
		4.7.3	Reduzierte Wärme und Entropie	97
		4.7.4	Nullpunkt der Entropie und dritter Hauptsatz	98
		4.7.5	Der Überströmversuch von Gay - Lussac	98
		1.1.0	Der e berbiteit ver eag Dubbae	.,0

0.1. VORWORT 7

0.1 Vorwort

Mit dieser Mitschrift wollen wir die Reihe der im Internet erhältlichen Skripte ergänzen und es den Hörern der Experimentalphysik für Chemie- und Elektroingenieure empfehlen. Da es trotz Fehlerkorrektur möglich ist, daß sich Fehler eingeschlichen haben, freuen wir uns über konstruktive Kritik.

Die Mitschrift haben wir unter Linux mit L_YX, einer grafischen Oberfläche zu L^AT_EX, erstellt.

Dieses Skript und sein Nachfolgeskript Experimentalphysik B sind unter http://www.uni-karlsruhe.de/~upix erhältlich.

Frank Frenzel Karsten Köth Hartmut Kuttruf upix@rz.uni-karlsruhe.de upkl@rz.uni-karlsruhe.de upiy@rz.uni-karlsruhe.de

0.2 Inhalt Teil B

- 1. Elektrizität und Magnetismus
 - (a) Elektrostatik
 - (b) Magnetostatik
 - (c) Elektrodynamik
- 2. **OPTIK**
 - (a) GEOMETRISCHE OPTIK
 - (b) Wellenoptik
 - (c) Quantenoptik
- 3. Aufbau der Materie
 - (a) Atome und Moleküle
 - (b) Festkörper
 - (c) Kerne

0.3 griechische Buchstaben

α	A	Alpha	ι	I	\mathbf{Jota}	$\rho \varrho$	Ρ	Rho
β	В	Beta	κ	K	Kappa	$\sigma \varsigma$	Σ	$_{ m Sigma}$
γ	Γ	Gamma	λ	Λ	$_{ m Lambda}$	au	Τ	Tau
δ	Δ	Delta	μ	\mathbf{M}	My	v	Y	Ypsilon
$\epsilon \ \varepsilon$	E	Epsilon	ν	N	Ny	$\phi \ arphi$	Φ	Phi
ζ	Z	\mathbf{Zeta}	ξ	Ξ	Xi	χ	X	Chi
η	Н	Eta	О	Ο	Omikron	ψ	Ψ	Psi
$\theta \vartheta$	Θ	Theta	πω	П	Pi	ω	Ω	Omega

0.4 Zehnerpotenzen

Potenzschreibweise	Dezimalschreibweise	Vorsilbe	Abkürzung
10 ¹	10	$_{ m Deka}$	da
10^{2}	100	Hekto	h
10^{3}	1 000	Kilo	k
10^{6}	1 000 000	Mega	\mathbf{M}
10^{9}	1 000 000 000	$_{ m Giga}$	G
10^{12}	1 000 000 000 000	Tera	${ m T}$
10^{15}	1 000 000 000 000 000	Peta	P
10-1	0,1	Dezi	d
10^{-2}	0,01	\mathbf{Zent}	c
10^{-3}	0,001	Milli	m
10^{-6}	0,000 001	Mikro	μ
10^{-9}	0,000 000 001	Nano	n
10^{-12}	0,000 000 000 001	Piko	p
10^{-15}	0,000 000 000 000 001	Femto	\mathbf{f}

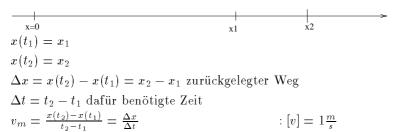
Kapitel 1

Mechanik

Kinematik des Punktes 1.1

Geschwindigkeit

mittlere Geschwindigkeit



MITTLERE GESCHWINDIGKEIT oder Durchschnittsgeschwindigkeit.

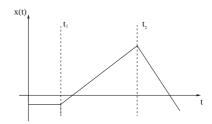
Momentangeschwindigkeit v

Idee: Wir machen die Zeit Δt immer kleiner.

$$v = \lim_{t_2 \to t_1} \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$
 Momentangeschwindigkeit

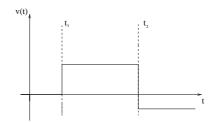
oder $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$ In der Physik ist die Geschwindigkeit meist die Momentangeschwindigkeit.

Weg-Zeit-Diagramm:

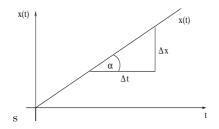


10

Geschwindigkeit-Zeit-Diagramm:



Die Steigung im Weg-Zeit-Diagramm als Momentangeschwindigkeit:



$$v_m = \frac{\Delta x}{\Delta t} = \tan \alpha$$
$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\alpha(t)}{dt} = x$$

dt infinitesimal

- Die Geschwindigkeit ist die Ableitung des Ortes nach der Zeit.
- $\dot{x} = \tan \alpha$ gibt die Steigung der Tangente an die x(t)-Kurve zum Zeitpunkt t an.
- Dies gilt auch für beliebige x(t).

1.1.2 Beschleunigung

GESCHWINDIGKEIT: Änderung des Weges als Funktion der Zeit.

Beschleunigung: Änderung der Geschwindigkeit als Funktion der Zeit?

mittlere Beschleunigung a_m :

$$a_m = \frac{v(t_2) - v(t_1)}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
Einheit:

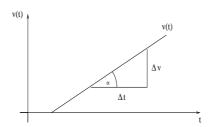
$$[a] = \frac{[v]}{[t]} = \frac{1\frac{m}{s}}{1s} = 1\frac{m}{s^2}$$

 ${\bf momentane\ Beschleunigung:}$

$$\begin{split} a &= \lim_{t_2 \to t_1} \frac{v(t_2) - v(t_1)}{t_2 - t_1} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \dot{v} \\ a\left(t\right) &= \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{\alpha^2 x(t)}{dt^2} = \ddot{x}\left(t\right) \end{split}$$

11

allgemein



a ist die Steigung im v(t)-Diagramm, a kann auch negativ sein. Bei negativem a muß |v| nicht geringer werden, da das Vorzeichen auch von der Wahl des Bezugssystems abhängen kann.

$$\Delta v = a \, \Delta t$$

allgemein für a(t) gilt:

$$dv = a(t) dt$$

$$\Delta v = \lim_{\Delta t_i \to 0} \sum a(t_i) \Delta t_i$$
 Schreibweise als Integral

$$\Delta v = \int_{t_1}^{t_2} a(t) dt \ v(t_2) = \underbrace{v(t_1)}_{Integrationskonstante} + \int_{t_1}^{t_2} a(t) dt$$

Aufsum. infinitesimaler Geschw. aenderungen

ebenso beim Weg:

$$v = \frac{dx}{dt} \qquad \Delta x = v \Delta t \qquad dx = v(t) dt$$

$$\Delta x = \int v(t) dt$$

$$x(t_2) = x(t_1) + \int_{t_1}^{t_2} v(t) dt$$

Die gleichförmig beschleunigte Bewegung

Die Grundformeln

$$v(t = 0) = 0$$
 $x(t = 0) = 0$ $a = const.$

$$v=a\,t$$

$$x=v_mt=\frac{v(t)-v(0)}{2}t \qquad \text{gilt nur bei } a=const.$$

$$x=\frac{at-0}{2}t$$

$$x=\frac{1}{2}a\,t^2$$

oder :
$$\Delta x = \int_{0}^{t} v(t)dt = \int_{0}^{t} (at)dt$$

$$= a \int_0^t t \, dt = \frac{1}{2} a \, t^2$$
allg:
$$\int t^n \, dt = \frac{1}{n+1} t^{n+1}$$

$$v = at (1)$$

$$x = \frac{1}{2}a t^2 \Rightarrow t^2 = \frac{2x}{a} \Rightarrow t = \sqrt{\frac{2x}{a}} (2)$$

$$(2) in(1) v = a\sqrt{\frac{2x}{a}} = \sqrt{2ax}$$

Das Superpositionsprinzip in einer Dimension

Bewegungsabläufe lassen sich übertragen.

Beispiel: Anfangsgeschwindigkeit: v_0 , Anfangskoordinaten: x_0

$$\implies x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$

und $v(t) = v_0 + at$

Dabei kann auch $v_0 < 0$ und a = 0 sein.

Anwendungen:

- senkrechter Wurf
- Fußgänger mit $v_F = const.$

1.1.4 Bewegungen in zwei oder drei Dimensionen

Superpositionsprinzip in 2 oder 3 Dimensionen

- Eine Bewegung läßt sich in Teilbewegungen zerlegen.
- Die Teilbewegungen laufen unabhängig voneinander ab und beeinflussen sich nicht gegenseitig.
- Die Summe der Teilbewegungen ergibt die Gesamtbewegung.

 \implies Die Bewegungen in x-, y-, und z- Richtung lassen sich völlig unabhängig voneinander beschreiben.

Beispiele

• Freier Fall

Freier Fall aus der Höhe H, $v_0 = 0$

$$v(t) = gt$$
 im Schwerefeld der Erde.

$$h(t) = H - \frac{g}{2}t^2$$

Fallzeit:
$$t(h = 0) = 0 = H - \frac{1}{2}g t^2$$

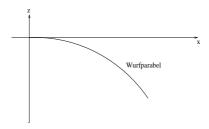
 $\implies t = \sqrt{\frac{2H}{g}}$

ullet waagrechter Wurf

Zerlegung in 2 Teilbewegungen:

- freier Fall in z-Richtung $z(t) = -\frac{1}{2}gt^2$
- konstante Bewegung mit v_x in x-Richtung

$$\begin{array}{ll} (1) & x(t) = v_x t \ \Rightarrow t = \frac{x(t)}{v_x} \\ (2) & z(t) = -\frac{1}{2} g \frac{x^2}{v_x^2} = -\frac{1}{2} \frac{g}{v_x^2} x^2 \\ \text{Wurfparabel } (z(x) = const \, x^2) \end{array}$$



Die vektorielle Darstellung

Idee: unabhängige Beschreibung der Teilbewegungen

$$x(t) = x_0 v_x t = a_x t^2$$

$$y(t) = y_0 v_y t = a_y t^2$$

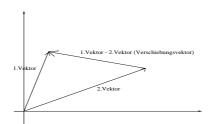
$$z(t) = z_0 v_z t = a_z t^2$$

als Vektoren:

als Vektoren:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \begin{pmatrix} v_0 x \\ v_0 y \\ v_0 z \end{pmatrix} t + \frac{1}{2} \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} t^2$$

oder kurz: $\vec{r} = \vec{r} c + \vec{v_0} t + \frac{1}{2} \vec{a} t^2$

Vektoren haben Einheiten! z.B.: $\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \frac{m}{s^2}$



Die mittlere Geschwindigkeit zeigt in die Richtung des Verschiebungsvektors! Wir betrachten zwei Arten physikalischer Größen:

- Skalare (nur Betrag)
- Vektoren (Betrag + Richtung)

1.2 Grundgesetze der klassischen Mechanik

1.2.1 Die drei Newtonschen Axiome

1. Erstes Newtonsches Axiom

TRÄGHEITSPRINZIP (siehe auch 1.2.2)

Ein Körper verharrt im Zustand der Ruhe oder der gleichförmig geradlinigen Bewegung, solange keine resultierende Kraft auf ihn einwirkt.

d.h.
$$\vec{v} = const.$$
 falls $\sum \vec{F}_i = 0$ (für $m = const.$)

2. Zweites Newtonsches Axiom

AKTIONSPRINZIP (siehe auch 1.2.3)

$$\vec{F} = m\vec{a} \quad \Leftrightarrow \quad \vec{a} = \frac{\vec{F}}{m}$$

$$\vec{F} \colon \text{Kraft} \qquad \qquad \vec{F} = \sum_i \vec{F}_i$$

m: Masse

 \vec{a} : Beschleunigung

Die Beschleunigung eines Körpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur resultierenden Kraft, die auf ihn einwirkt.

allgemeinere Formulierung:

$$\vec{F} = \vec{p}$$
 $\vec{p} = m\vec{v}$

3. Drittes Newtonsches Axiom

REAKTIONSPRINZIP (siehe auch 1.2.4)

actio = reactio

Kräfte treten immer paarweise auf. Übt ein Körper A auf einen Körper B eine Kraft F aus, so übt Körper B eine betragsmäßig gleiche, aber entgegengesetzte Kraft auf Körper A aus.

1.2.2 Trägheitsprinzip und Inertialsysteme (Erstes Newtonsches Axiom)

$$\left. egin{array}{l} ec{r} & \ ec{r} \end{array}
ight.
ight.$$
 sind immer in Bezug auf ein Koordinatensystem definiert.

Ein solches Koordinatensystem, auf das man sich bei der Beschreibung einer Bewegung bezieht, heißt Bezugssystem.

Ein unbeschleunigtes Bezugssystem heißt Inertialsystem.

- In allen relativ zu einem Inertialsystem mit $\vec{v} = const$. bewegten Koordinatensystemen gilt das erste Newtonsche Axiom und folglich gilt: $\vec{v}_1 = const., \vec{v}_2 = const. \Rightarrow \vec{v}_1 + \vec{v}_2 = const. \Rightarrow \text{Jedes solches System ist}$ ebenfalls Inertialsystem.
- In einem relativ zu einem Inertialsystem BESCHLEUNIGTEN BEZUGSSYSTEM gilt das 1. Newtonsche Axiom nicht, da dies kein Inertialsystem ist.

DIE ERDE kann nur n\u00e4herungsweise als Inertialsystem angesehen werden. Das

 Newtonsche Axiom gilt nicht exakt, wegen der Erdrotation.

 Dies f\u00fchrt zur sogenannten Corioliskraft.

1.2.3 Kraft, Masse und Impuls (Zweites Newtonsches Axiom)

Masse: m

$$[m] = 1 kg$$

Messung der Masse über die Gewichtskraft: F = m g

Vergleich mit der Gravitationskraft, die auf ein Massennormal, das "UR-KILOGRAMM", wirkt.

Kraft: F

$$\vec{F} = m\,\vec{a}$$

$$[F] = [m][a] = 1kg\frac{m}{s^2} = 1N$$

Messung der Kraft:

- 1. Vergleich mit der Gewichtskraft einer bekannten Masse.
- 2. Messung mit Hilfe einer Federwaage (Hooksches Gesetz)

"Die Ausdehnung einer Feder ist proportional der längs ihrer Achse wirkenden Zugkraft." $F=D~\Delta x~D$: Federkonstante

 Δx : Auslenkung der Feder

Achtung: Dies ist kein Naturgesetz, gilt nur näherungsweise und für kleine Auslenkungen.

Impuls

$$\vec{p} = m \vec{v}$$
$$[p] = [m][v] = 1 \frac{kg m}{s}$$

Die allgemeine Form des 2. Newtonschen Axioms

$$\vec{F} = \vec{p} = \frac{d}{dt} (m \vec{v})$$
 (Produktregel!)
= $m\vec{v} + \vec{v} m$
 $\Rightarrow \vec{F} = m\vec{a} + m\vec{v}$

Wir unterscheiden zwei Fälle:

Fall 1:
$$m = const \Rightarrow \dot{m} = 0$$

 $\vec{F} = m \vec{a}$

Fall 2:
$$\vec{a} = 0 \implies \vec{v} = const$$

 $\Rightarrow \vec{F} = m \vec{v}$

Es wird immer mehr Masse aus der Ruhe auf eine Bestimmte Geschwindigkeit \vec{v} gebracht.

1.2.4 Kraft und Gegenkraft, Schwerelosigkeit (Drittes Newtonsche Axiom)

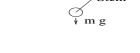
- Zu jeder Kraft wirkt eine Gegenkraft.
- Wirkt auf einen Körper eine Gegenkraft, so ist die relative Beschleunigung Null.

Beispiel: Ein Mensch sitzt auf einem Stuhl.

Auf ihn wirken zwei Kräfte:

 $\vec{F}_0 = m \vec{g}$ und $\vec{F}_{Stuhl} = -m \vec{g} \Longrightarrow \text{Der Mensch bleibt in Ruhe.}$

Beispiel: freier Fall



Zur Gewichtskraft wirkt auf den Stein keine Gegenkraft, daher fällt er.

1.2.5 Die Äquivalenz von schwerer und träger Masse

 $\begin{array}{l} \sum_{i} F_{i} = m_{i} \; \vec{a} \; (\text{träge Masse}) \\ \vec{F}_{g} = m_{s} \; \vec{g} \; (\text{schwere Masse}) \end{array}$

Ist ein Körper nur seiner Gewichtskraft ausgesetzt, so gilt $\sum_i = \vec{F}_i = m_s \, \vec{g}$

 $\Rightarrow m_s \vec{g} = m_i \vec{a}$

 $\vec{a} = \frac{m_s}{m_s} \vec{g}$

Beobachtung:

Ohne Luftwiderstand ist die Beschleunigung im freien Fall für alle Körper am selben Ort gleich. $\frac{m_s}{m_t} = const =: 1 \Longrightarrow \ddot{\text{A}}$ quivalenz von m_s und m_t . \Longrightarrow Massenvergleich über die Gewichtskraft möglich.

1.2.6 Reibungskräfte

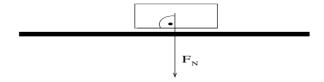
Haft- und Gleitreibung

 $F_H = \mu_H F_N$ Haftreibungskraft

 $F_{Gl} = \mu_{Gl} F_N$ Gleitreibungskraft

Diese Näherung ist unabhängig von Geschwindigkeit und Auflagefläche.

17



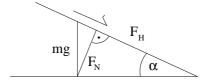
 F_N : Normalkraft = Kraft senkrecht (\perp) μ_H : Haftreibungskonstante

Reibungsarbeit

 $W_R = \mu_{Gl} F_N s$ (Gleitreibung)

Bei Haftreibung tritt keine Reibungsarbeit auf, da s=0 gilt.

Bestimmung von μ_H an der schiefen Ebene



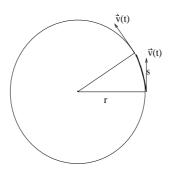
$$F_H = F_N \mu_H$$

$$m g \sin \alpha = m g \cos \alpha \mu_H$$

$$\Rightarrow \mu_H = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

1.3 Drehbewegung / Rotation

1.3.1 Kinematik der Drehbewegung



Ein Massenpunkt bewegt sich auf einem Kreis mit dem Radius r um den Mittelpunkt zunächst gleichförmig.

$\underline{\rm Eindimensional:}$

$$v(t) = \frac{ds}{dt} = \dot{s} = const$$

<u>Dreidimensional:</u>

 $\vec{v}(t)$ aber $|\vec{v}| = const.$ die Richtung ändert sich!

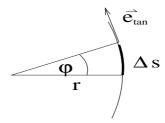
Der Geschwindigkeitsvektor ist immer tangential zur Bahnkurve.

 $\vec{v} = |\vec{v}| \vec{e}_{tan}$ \vec{e}_{tan} : Einheitsvektor in Richtung der Tangente.

Da $\vec{v} = \vec{v}(t)$ gilt, liegt eine beschleunigte Bewegung vor.

Radial- und Tangentialkomponente der Beschleunigung:

$$\vec{a}(t) = \underbrace{\frac{d|v|}{dt} \vec{e}_{tan}}_{tangential, (\vec{a}_{tan}=0 \Rightarrow gleich foermig} + \underbrace{|v| \frac{d\vec{e}_{tan}}{dt}}_{radial, \vec{a}_{r}}$$



Falls φ sehr klein ist, ist $\Delta \vec{e}_{tan}$ auf den Mittelpunkt gerichtet.

$$\underbrace{\frac{\left|\Delta\vec{e}_{tan}\right|}{\left|\vec{e}_{tan}\right|}}_{=0} = \frac{\Delta s}{r} \Rightarrow \frac{d\vec{e}_{tan}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t \, r} = \frac{|v|}{r}$$

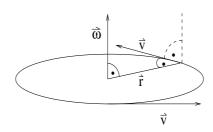
 \Rightarrow Radialbeschleunigung $|a_r| = \frac{v^2}{r}$ Die Kreisbewegung hat eine konstante Beschleunigung $|a_r|$ in Richtung des Kreismittelpunktes.

Beschreibung der Winkelgröße φ im Bogenmaß: $\varphi = \frac{s}{r}$ $\varphi : [rad]$

Die zeitliche Änderung des Winkels ist die Winkelgeschwindigkeit:

$$\omega = \frac{d\varphi}{dt} \qquad [\omega] = 1 \frac{rad}{s} = 1s^{-1}$$

für die gleichförmige Kreisbewegung: $\omega = \frac{2\pi}{T} \hat{=} \mathbf{Kreisfrequenz}, \mathbf{T} = \mathbf{Umlaufzeit}$ Die Winkelgeschwindigkeit ist ein axialer Vektor: $\vec{\omega}$



 $\longrightarrow \vec{\omega}$ steht senkrecht auf der Ebene der Kreisbewegung. \longrightarrow Die Drehrichtung ist eine Rechtsschraube (Rechte-Hand-Regel).

Es gilt:
$$\vec{v} = \vec{\omega} \times \vec{r}$$
 (1)

Das Vektorprodukt zweier Vektoren \vec{a} und \vec{b} ist der Vektor \vec{c} : $\vec{c} = \vec{a} \times \vec{b}$

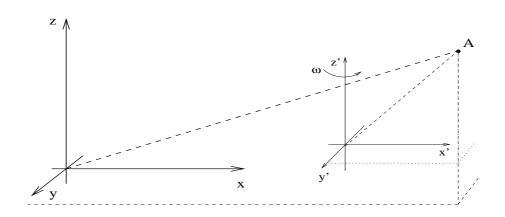
- \vec{c} steht senkrecht zu \vec{a} und \vec{b} .
- Für seinen Betrag gilt: $|\vec{c}| = |\vec{a}| |\vec{b}| \sin < (\vec{a}, \vec{b})$
- \vec{a} , \vec{b} , \vec{c} bilden ein Rechtssystem.

Das Vektorprodukt ist weder kommutativ noch assoziativ: $(\vec{a}\times\vec{b})=-(\vec{b}\times\vec{a})$

19

$$\begin{split} \vec{c} \times (\vec{a} \times \vec{b}) &= (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \\ \vec{v} &= \vec{\omega} \times \vec{r} \\ \vec{r} \times \vec{v} &= \vec{r} \times (\vec{\omega} \times \vec{r}) \\ &= (\vec{r} \cdot \vec{r}) \vec{\omega} - \underbrace{(\vec{r} \cdot \vec{\omega})}_{=0} \vec{r} \\ &= r^2 \vec{\omega} \\ \implies \vec{\omega} &= \frac{1}{r^2} \vec{r} \times \vec{v} \\ \text{mit } |a_r| &= \frac{v^2}{r} \\ \implies \vec{a}_r &= -\omega^2 \vec{r} \text{ Radialbeschleunigung} \\ \textbf{Winkelbeschleunigung} \qquad \alpha &= \frac{dw}{dt} = \frac{d^2 \varphi}{dt^2} \\ \text{Da gilt: } \frac{d}{dt} \omega &= \frac{d}{dt} (\frac{d}{dt} \varphi) \text{ und } \omega &= \frac{d\varphi}{dt}. \end{split}$$

Scheinkräfte im gleichförmig rotierenden Bezugssystem 1.3.2



Scheinkräfte treten in beschleunigten Bezugssystemen auf, wobei in unserem Beispiel die Drehachse z' parallel zu z ist.

ruhendes Bezugssystem:

(x,y,z) mit $\hat{e}_x,\hat{e}_y,\hat{e}_z$ $(\hat{e}_x \text{ ist Einheitsvektor in x-Richtung}).$

rotierendes Bezugssystem:

$$(x', y', z') \text{ mit } \hat{e}'_x, \hat{e}'_y \hat{e}'_z.$$

Der Punkt A hat den Ortsvektor:

$$\vec{r}(t) = x(t)\hat{e}_x + y(t)\hat{e}_y + z(t)\hat{e}_z,$$

und die Geschwindigkeit:

$$\label{eq:variation} \vec{v}(t) = \frac{dx}{dt} \hat{e}_x + \frac{dy}{dt} \hat{e}_y + \frac{dz}{dt} \hat{e}_z,$$
im rotierenden System dagegen:

$$\vec{r}(t) = x^* \hat{e}_x^* + y^* \hat{e}_y^* + z^* \hat{e}_z^*$$

$$\vec{v}(t) = \frac{d\vec{r}^*}{dt} = \frac{dx^*}{dt}\hat{e}_x^* + \frac{dy^*}{dt}\hat{e}_y^* + \frac{dz^*}{dt}\hat{e}_z^*$$

und die Geschwindigkeit: $\vec{v}(t) = \frac{d\vec{r}^*}{dt} = \frac{dx^*}{dt} \hat{e}_x^* + \frac{dy^*}{dt} \hat{e}_y^* + \frac{dz^*}{dt} \hat{e}_z^*$ Ein ruhender Beobachter gibt die Geschwindigkeit im rotierenden System so an (Rotation des Koordinatensystems wird berücksichtigt):

$$\vec{v}(t) = \frac{dx^*}{dt}\hat{e}_x^* + \frac{dy^*}{dt}\hat{e}_y^* + \frac{dz^*}{dt}\hat{e}_z^* + (x^*\hat{e}_x^* + y^*\hat{e}_y^* + z^*\hat{e}_z^*)$$

$$= \vec{v}^*(t) + \vec{\omega} \times \vec{r}$$
 und die Beschleunigung:
$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d\vec{v}^*}{dt} + (\vec{\omega} \times \frac{d\vec{r}}{dt})$$

$$\vec{a}^* = \vec{a} + \underbrace{2(\vec{v}^* \times \vec{\omega})}_{\text{Coviolishesekkonigung}} + \underbrace{\vec{\omega} \times (\vec{r} \times \vec{\omega})}_{\text{Coviolishesekkonigung}}$$

1.4 Arbeit, Leistung, Energie und Kräfte

1.4.1 Arbeit

Konstante Kraft und geradliniger Weg

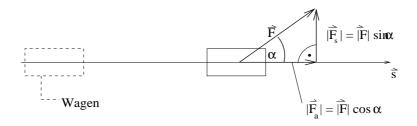
$$W := F s \cos \alpha$$

$$[W] = [F][s]$$

$$= 1N 1m = 1Nm =: 1J$$

$$1J = 1Nm = 1\frac{kg m}{s^2}m$$

Wir ziehen einen Wagen von links nach rechts:



 $F_a=F\cos\alpha$ F_a Kraftkomponente parallel zu \vec{s} $W=Fs\cos\alpha=F_as$ Arbeit ist das Produkt aus Kraftkomponenten parallel zum zurückgelegten Weg und dem Weg s selbst. \vec{F} : auf den Körper wirkende Zugkraft \vec{s} : vom Körper zurückgelegter Weg

Vorzeichen:

- gleiches Vorzeichen von $F_{||}$ und $s: W>0 \Longrightarrow \mathrm{Am}$ Körper wird Arbeit verrichtet.
- unterschiedliche Vorzeichen von $F_{||}$ und s:W>0 \Longrightarrow Der Körper verrichtet Arbeit an seiner Umgebung, was im Gegensatz zum Arbeitsbegriff im Alltag steht.

Die Kraft abhängig vom geradlinigen Weg

$$F = F(s)$$
 $\Rightarrow W = F s \cos \alpha$ gilt hier nicht, da F nicht konstant ist.

Konzept: für infinitesimal kleine Wegpunkte ds ist die Kraft F konstant.

$$W = \lim_{\Delta s \to 0} \sum_{s \to 0} F \Delta s \cos \alpha$$

$$dW = F \cos \alpha \ ds \quad \Rightarrow \quad W = \int_{s_1}^{s_2} F(s) \cos \alpha \ ds$$

Allgemeiner Fall: Dreidimensionale Bewegung

Idee: Zerlegung der Kraft in x-, y- und z- Komponente

$$d\vec{s} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} \qquad \vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

 F_x verrichtet nur eine Arbeit längs $d\vec{x}$, NICHT längs $d\vec{y}$ oder $d\vec{z}$, weil $d\vec{y}$, $d\vec{z} \perp \vec{F_x}$. Analog für $\vec{F_y}$ und $\vec{F_z} \Longrightarrow dW = F_x dx + F_y dy + F_z dz$

Skalarprodukt

DEFINITION:
$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$
$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

$$\vec{a} \in R^3; \quad \vec{b} \in R^3; \quad \vec{a} \cdot \vec{b} \in R$$

$$Vektor \quad Skalarprodukt$$

Rechengeeln: $(\alpha \vec{a}) \cdot \vec{b} = \alpha (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\alpha \vec{b})$ für $\alpha \in R(Skalar)$

Anwendung:
$$dW = F ds \cos \alpha$$

 $dW = \vec{F} d\vec{s} = F_x dx + F_y dy + F_z dz$
 $\Rightarrow W = \int_{s_1}^{s_2} \vec{F} d\vec{s}$

1.4.2 Leistung und Wirkungsgrad

Arbeit: Parallelkomponente der Kraft mal Weg.

LEISTUNG: Arbeit pro Zeit.

$$P = \frac{dW}{dt} \qquad \textbf{Leistung}$$
 (Spezialfall: für P=const. gilt auch $P = \frac{\Delta W}{\Delta t}$)
$$[P] = \frac{[W]}{[t]} = \frac{1J}{s} = 1W$$

$$1W = 1\frac{J}{s} = 1\frac{Nm}{s} = 1\frac{kgm}{s^2} \frac{m}{s} = 1\frac{kgm^2}{s^3}$$
 mechanische Leistung:
$$P = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{s}}{dt} = \vec{F} \cdot \vec{v}$$

$$P = \vec{F} \cdot \vec{v} = F_x v_x + F_y v_y + F_z v_z$$

Wirkungsgrad (einer Maschine, Motor etc.):

$$\eta = rac{P_{out}}{P_{in}} = rac{Nutzleistung}{investierte Leistung}$$

1.4.3 Potentielle Energie

Definition der Energie allgemein

Energie ist die Fähigkeit eines Systems, Arbeit zu verrichten.

Energie = "gespeicherte Arbeit"

$$\longrightarrow$$
 $[F] = [W] = 1J = 1Nm$

Formen von Energie:

- potentielle Energie (Energie der Lage / Federenergie)
- kinetische Energie (Energie der Bewegung)
- thermische Energie (Wärmeenergie)
- chemische Energie (z.B. im Treibstoff)
- Strahlungsenergie (z.B. Licht)

potentielle Energie einer Hookschen Feder

$$F = D x$$
 (Feder entspannt für $x = 0$)

Arbeit:

$$W = \int_{x_1}^{x_2} F(x) \, dx \quad \underbrace{\cos \alpha}_{1 \, fuer \, \vec{F} \, || \, \vec{x}} = \int_{x_1}^{x_2} F(x) \, dx$$

$$W = \int_{x_1}^{x_2} Dx \, dx = D \int_{x_1}^{x_2} x \, dx$$

$$W = D\left(\frac{x_2^2}{2} - \frac{x_1^2}{2}\right)$$

Spezialfall:

$$x_1 = 0$$

$$W = \frac{1}{2}D x^2$$

Arbeit W
 zum Spannen der Feder = in der gespannten Feder gespeicherte Energie

 $E_{pot}=\frac{1}{2}D\,x^2$ potentielle Energie einer Hookschen Feder anschauliche Herleitung: W = mittlere Kraft ·Weg $W=\frac{D_x}{2}\cdot x=\frac{D}{2}x^2$

potentielle Energie im Gravitationsfeld

Annahme: g = constAnheben um h F = mg = const s = h $\cos \alpha = 1$ $\Rightarrow W = F s \cos \alpha$ $= mg h 1 = \Delta E_{pot}$

$$\Delta E_{pot} = m g h$$

Beachte: Der Nullpunkt der potentiellen Energie im Gravitationsfeld ist willkürlich festgelegt. Dies hat jedoch auf die Arbeit und damit die Änderung ΔE_{pot} der potentiellen Energie E_{pot} keinen Einfluß.

1.4.4 Kinetische Energie

An einem Körper verrichtete Beschleunigungsarbeit resultiert in einem Zuwachs an kinetischer Energie (Energie der Bewegung).

$$F = ma \quad \text{mit } \vec{F}_{||} \quad \vec{a} \Rightarrow \cos \alpha = 1$$

$$s = \frac{1}{2}at^2 \qquad = \frac{1}{2}a\frac{v^2}{a^2} = \frac{v^2}{2a}$$

$$W = Fs \underbrace{\cos \alpha}_{=1} = ma\frac{v^2}{2a}1$$

$$= \frac{1}{2}mv^2$$

$$E_{kin} = \frac{1}{2}mv^2$$

1.4.5 Der Energieerhaltungssatz (EES)

IN EINEM ABGESCHLOSSENEN SYSTEM IST DIE SUMME ALLER ENERGIEN KONSTANT (Ein Erfahrungssatz).

Daher:

Energie kann weder aus dem Nichts erzeugt noch vernichtet werden, sondern immer nur in andere Energieformen umgewandelt werden: Unmöglichkeit eines sogenannten **Perpetuum Mobile**.

EES der Mechanik (ein Spezialfall des allgemeinen EES)

In einem abgeschlossenen System ist die Summe aus potentieller und kinetischer Energie konstant, sofern ausschließlich konservative Kräfte wirken:

$$E_{kin} + E_{pot} = const$$

1.4.6 konservative und nicht konservative Kräfte

Definitionen:

- Bei Konservativen Kräften ist die verrichtete Arbeit unabhängig vom Weg, der vom Startpunkt \vec{r}_1 zum Zielpunkt \vec{r}_2 verwendet wird. Die Gewichtskraft ist also eine konservative Kraft. Für konservative Kräfte läßt sich jedem Ort relativ zu einem Bezugspunkt eindeutig ein Potential (= pot. Energie relativ zum Bezugspunkt) zuordnen.
- Bei NICHT-KONSERVATIVEN Kräften ist die verrichtete Arbeit abhängig vom Weg der von \vec{r}_1 nach \vec{r}_2 verwendet wird. Die Reibungskraft ist also eine nichtkonservative Kraft.

1.4.7 Kraft und Potential

In einer Dimension:

$$dE_{pot} = F_x dx$$
$$F_x = \frac{dE_{pot}}{dx}$$

In drei Dimensionen (bei konservativen Kräften):

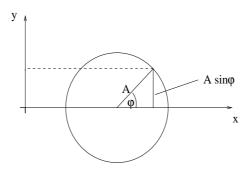
$$F = \begin{pmatrix} \frac{dE_{pot}}{dx} \\ \frac{dE_{pot}}{dy} \\ \frac{dE_{pot}}{dz} \end{pmatrix} =: \vec{\nabla} E_{pot} \qquad \vec{\nabla}: \mathbf{Gradient} \text{ (Vektor!)}$$

 $E_{pot} = E_{pot}(x, y, z)$ $\frac{dE_{pot}}{dx}$: potentielle Ableitung nach x (y, z werden dabei wie Konstanten behandelt) $\frac{\text{schwere Masse}}{\text{traege Masse}} = 1$

Schwingungen 1.5

Die harmonische Schwingung 1.5.1

Kreisbewegung von der Seite betrachtet (d.h. Projektion der Kreisbewegung auf die y-Achse)



$$\varphi = \omega t$$
 α : Winkel zum Zeitpunkt $t = 0$.

allg.:
$$A(t) = A_0 \sin(\omega t + \alpha)$$

$$\Rightarrow$$
sog. $harmonische$ $\underbrace{Schwingung}_{periodische\ Bewegung}$ A_0 : Amplitude

 $\omega t + \alpha$: Phase

 ω : Kreisfrequenz $(\omega = \frac{2\pi}{T})$

T: Periode

Wir setzen nun $\alpha = 0$ für folgende Überlegungen:

Ort: $A(t) = A_0 \sin(\omega t)$

Geschwindigkeit: $v(t) = A(t) = A_0 \omega \cos(\omega t)$

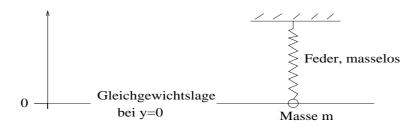
Beschleunigung: $a(t) = \dot{v}(t) = -A_0 \omega^2 \sin(\omega t)$

$$\implies$$
 Kraft: $F(t) = m \, a(t) = \underbrace{-m\omega^2}_{} A(t)$

Eine rücktreibende Kraft, deren Betrag proportional zur Auslenkung ist, führt zu einer harmonischen Schwingung.

Eine solche Kraft heißt elastische Kraft (Beispiel Hooksche Feder).

1.5.2 Die harmonische Schwingung einer Hookschen Feder



$$y(t) = y_0 \sin \omega t$$

$$a = \ddot{y}(t) = -\omega^2 y_0 \sin \omega t = -\omega^2 y(t)$$

$$F = m a = -m \omega^2 y \qquad (1)$$

$$F = -Dy \qquad (2) \qquad \text{(Hooksches Gesetz)}$$

$$\text{Aus}(1) \text{ und } (2) \text{ folgt } D = m\omega^2$$

$$\omega = \sqrt{\frac{\mathbf{D}}{\mathbf{m}}}$$

$$\omega \colon \text{Kreisfrequenz}$$

$$D \colon \text{Federkonstante}$$

m: Masse

1.5.3 Energieerhaltung bei einer harmonischen Schwingung

$$y = y_0 \sin \omega t$$

$$\dot{y} = y_0 \omega \cos \omega t$$

$$E_{pot} = \frac{D}{2} y^2 = \frac{D}{2} y_0^2 \sin^2 \omega t$$

$$E_{kin} = \frac{m}{2} \dot{y}^2 = \frac{m}{2} v_0^2 \omega^2 \cos^2 \omega t$$

$$= \frac{m}{2} y_0^2 \frac{D}{m} \cos^2 \omega t$$

$$= \frac{D}{2} y_0^2 \cos^2 \omega t$$

$$= \frac{D}{2} y_0^2 \sin^2 \omega t + \frac{D}{2} y_0^2 \cos^2 \omega t$$

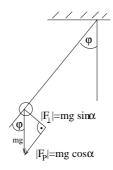
$$= \frac{D}{2} y_0^2 \sin^2 \omega t + \cos^2 \omega t = \frac{D}{2} y_0^2$$

$$E = E_{pot} + E_{kin} = \cos t$$

$$= \frac{D}{2} y_0^2 = \frac{m}{2} \qquad y_0^2 \omega^2$$

$$\max Geschwindigheit$$

Das mathematische Pendel 1.5.4



rücktreibende Kraft: $F_{\perp} = -m g \sin \varphi$

Näherung für kleine φ ($\varphi < 5^{\circ}$)

 $\sin \varphi \approx \varphi$

 $\Rightarrow F_{\perp} = -m g \varphi$ Elastische Kraft für kleine φ_0

 \Rightarrow harmonische Schwingung für kleine φ_0

1.6 Impulserhaltung und Stoßgesetze

Der Impulserhaltungssatz 1.6.1

zur Erinnerung: $\vec{p} = m \vec{v}$: Impuls

2. Newtonsche Axiom: $\vec{F} = \vec{p}$

3. Newtonsche Axiom: $\vec{F}_1 = -\vec{F}_2$ (jede Kraft hat eine Gegenkraft)

 $\Rightarrow \vec{F} = \vec{F_1} + \vec{F_2} = 0 \quad \Rightarrow \quad \vec{p} = 0 \quad \Rightarrow \vec{p} = const.$

(2 Massenpunkte in gegenseitiger Wechselwirkung)

allg.: Impulserhaltungssatz (IES)

DER GESAMTIMPULS EINES ABGESCHLOSSENEN SYSTEMS IST KONSTANT.

Ein abgeschlossenes System ist dabei ein System, auf das keine resultierende Kraft von außen wirkt.

Gesamtimpuls: $\vec{p} = m_1 \vec{v}_1 + m_2 \vec{v}_2 \dots = \sum_i m_i \vec{v}_i$

1.6.2 Der Schwerpunkt (oder Massenmittelpunkt)

$$\begin{split} \vec{r_s} &= \frac{\sum_{m_i}^{m_i \vec{r_i}}}{\sum_{m_i}} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2} + \dots}{m_1 + m_2 + \dots} \\ \frac{d}{dt} \vec{r_s} &= \vec{r_s} = \vec{v_s} \\ &= \frac{\sum_{m_i} \vec{v_i}}{\sum_{m_i}} = \frac{\vec{p_i}}{\sum_{m_i}} = \frac{\vec{p}}{m} \\ \vec{r_s} &: \text{ Ort des Gesamtschwerpunktes} \end{split}$$

 \vec{r}_i : Ort des Einzelschwerpunktes

 \vec{v}_s : Schwerpunktgeschwindigkeit

p: Gesamtimpuls

m: Gesamt masse

 $\vec{p} = m\vec{v}_s$

1.6.3 gerader, elastischer Stoß

Gerader, zentraler Stoss: Beide Massen bewegen sich auf einer Geraden. Elastischer Stoss: Der EES der Mechanik gilt, was bedeutet, daß die gesamte kinetische Energie vor und nach dem Stoß gleich bleibt und keine Umwandlung von kinetischer Energie in Wärme stattfindet.

vor dem Stoß: \vec{v}_1 , \vec{v}_2

nach dem Stoß: \vec{v}_1' , \vec{v}_2'

IES:
$$m_1 \vec{v_1} + m_2 \vec{v_2} = m_1 \vec{v_1} + m_2 \vec{v_2}$$

$$m_1(v_1 - v_1') = m_2(v_2' - v_2)$$

EES:
$$\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 = \frac{1}{2}m_1 v_1'^2 + v_2'^2$$

$$m_1(v_1^2 - v_1'^2) = m_2(v_2^2 - v_2'^2)$$

$$m_1(v_1 + v_1')(v_1 - v_1') = m_2(v_2' + v_2)(v_2' - v_2)$$

$$v_1 - v_2 = -(v_1' - v_2') \tag{*}$$

(*) in IES eingesetzt:

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

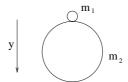
$$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$$

1. Spezialfall: $m_1 = m_2 = m$

 $v_1' = v_2$ Geschwindigkeit, Impuls und Energie werden ausgetauscht.

$$v_2' = v_1$$

2. Spezialfall: $m_1 \ll m_2$



$$v_1 - v_2 = v_2' - v_1'$$

$$+v\downarrow \circ$$

$$-v\uparrow\bigcirc$$

$$v_1 - v_2 = v - (-v) = 2v$$

 $\Delta v = 2v$ v_2' : ändert sich kaum bei Stoß mit m_1 .

1.6.4 gerader, zentraler inelastischer Stoß

Der EES der Mechanik gilt nicht, da z.B. Energie durch Reibung oder unelastischer Verformung entzogen wird.

IES: wie gehabt.

EES:
$$E_1 + E_2 = E'_1 + E'_2 + \Delta W$$

 $\frac{1}{2}m_1 v_1^2 + \frac{1}{2}m_2 v_2^2 = \frac{1}{2}m_1 v_1'^2 + \frac{1}{2}m_2 v_2'^2 + \Delta W$

Falls ΔW nicht bekannt ist, wird eine weitere Gleichung benötigt.

Gegeben: $v_1, v_2 = 0, m_1 = m_2 = m$

IES: $m_1v_1 + m_2v_2 = (m_1 + m_2)v'$

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} = \frac{m_1 v_1}{m_1 + m_2} = \frac{m}{2m} v_1 = \frac{v_1}{2}$$
 vor dem Stoß: $E_{kin} = \frac{1}{2} m v_1^2$

nach dem Stoß: $E'_{kin} = \frac{2m}{2}v_2^2 = \frac{1}{4}m v_1^2$

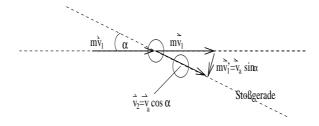
nicht zentraler Stoß mit $m_1 = m_2$

Kraftstoss:

$$F = \frac{d\vec{p}}{dt}$$

$$\Rightarrow d\vec{p} = F(t) dt$$

$$\Rightarrow \Delta \vec{p} = \int F(t) dt$$



Keine Reibung zwischen den Kugeln!

 \Longrightarrow Kraft \bot Berührungsfläche

⇒ Impulsübertrag (↑Kraftstoß) um || Stoßgerade.

 $\implies v_2' \mid\mid \text{Stofgerade}.$

Kugel 2 erhält wegen $m_1 = m_2$ den gesamten Impulsanteil || Stoßgerade. Der Impuls \(\perp \) Stoßgerade ist nicht übertragbar und verbleibt daher bei Kugel 1.

$$\vec{v}_1^{\prime 2} \perp \vec{v}_2^{\prime 2}$$
 für $m_1 = m_2$

 \vec{v}_1' : Geschwindigkeit der Kugel 1 nach dem Stoß.

 \vec{v}_2' : Geschwindigkeit der Kugel 2 nach dem Stoß.

Die Physik der Drehbewegung 1.7

Drehbewegung eines Massenpunktes

Bis jetzt hatten wir nur die Physik der Translationsbewegung, nun kommen wir zur Physik der Kreisbewegung. Unser Ziel ist es, eine möglichst bequeme Beschreibung ganz analog zur Translation zu finden. Als einfachstes System untersuchen wir zunächst einen Massenpunkt auf einer festen Kreisbahn ohne Einwirkung der Gravitation.

Kinematik

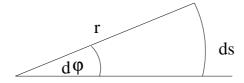
KINEMATIK DER TRANSLATION KINEMATIK DER ROTATION

$$s:$$
 Weg $\varphi:$ Winkel $v=s$ Geschwindigkeit $\omega=\varphi:$ Winkelgeschwindigkeit $a=v=\ddot{s}$ Beschleunigung $\alpha=\dot{\omega}=\ddot{\varphi}:$ Winkelbeschleunigung

Formeln für
$$a = const.$$
 Formeln für $\alpha = const.$

$$\begin{array}{lll} \Delta v = a \ t & \Delta \omega = \dot{\omega} \ t \\ s = \frac{a}{2} t^2 & \varphi = \frac{\dot{\omega}}{2} t^2 \\ v = \sqrt{2as} & \omega = \sqrt{2\omega\varphi} \end{array}$$

Umrechnung bei Kreisbewegung:



$$\Rightarrow \underbrace{\frac{ds}{dt}}_{t} = r \underbrace{\frac{d\varphi}{dt}}_{t} \Rightarrow \mathbf{v} = \mathbf{r} \,\omega$$

kinetische Energie 1.7.2

<u>kinetische</u> <u>Energie</u> <u>der</u> <u>Translation:</u>

$$E_{kin} = \frac{1}{2}m v^2 \underbrace{=}_{p=mv} \frac{p^2}{2m}$$

m: Masse

p: Impuls

$$\frac{\text{kinetische Energie der Rotation}}{E_{kin} = \frac{1}{2} m \, v^2} \underbrace{\frac{1}{2} m \, r^2 \, \omega^2}_{v=r\omega} = : E_{kin} = \frac{1}{2} \vartheta \, \omega^2 \qquad \text{mit } \vartheta = m r^2$$

ϑ : Trägheitsmoment

$$[\vartheta] = [m][r^2] = 1kg \ m^2$$

Umformung:

$$E_{kin} = \frac{1}{2}\vartheta \,\omega^2 = \frac{(\vartheta \omega)^2}{2\vartheta} = \frac{L^2}{2\vartheta}$$
$$E_{kin} = \frac{L^2}{2\vartheta} \quad \text{mit } L := \vartheta \omega$$

$$L : \mathbf{Drehimpuls} \text{ (vgl.: } p = mv \leftrightarrow L = \vartheta\omega)$$

$$[L] = [\vartheta][\omega] = 1 \frac{k g m^2}{s}$$

1.7.3 Leistung

$\underline{\text{Leistung bei Translation:}}$

$$P = \frac{dW}{dt} = \frac{F \, ds}{dt} = F \, v \qquad \text{(falls } \vec{F} || \vec{v} \text{)}$$

 $F \colon \mathbf{Kraft}$

v: Geschwindigkeit

<u>Leistung bei Rotationsbewegung:</u>

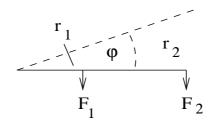
$$P = Fv = \underbrace{Fr}_{M} \omega = M\omega$$

$$P = M \omega \quad \text{mit } M = Fr \quad \text{wobei } \vec{F} \bot \vec{r}$$

M: Drehmoment [M] = [F][r] = 1Nm

VORSICHT: trotz gleicher Einheit ist M weder eine Arbeit noch eine Energie!!!

1.7.4Hebelgesetz



$$dW = F_2 ds = \underbrace{F_2 r}_{M} d\varphi$$

$$dW = M d\varphi \quad \text{mit } M = \underbrace{F_2}_{Kraft} \underbrace{r}_{Hebelarm}$$
Aus dem EES folgt:

Aus dem EES folgt:

$$\begin{split} F_{\perp}r &= const. & \Leftrightarrow F_1r_1 = F_2r_2 \\ &\Rightarrow \frac{F_1}{F_2} = \frac{r_2}{r_1} \end{split}$$

Formulierung des 2. Newtonschen Gesetzes für die 1.7.5Drehbewegung

Die Tangentialkraft F_T ist die tangential zur Kreisbahn wirkende Kraft.

$$F_T = ma_T = mr\omega$$

$$\underbrace{rF_T}_{M} = \underbrace{mr^2}_{r\vartheta}\omega$$

$$\Rightarrow M = \vartheta\omega \qquad (vgl.: F = ma)$$

M: Drehmoment *θ*: Trägheitsmoment

1.7.6 Gegenüberstellung von Translation und Rotation

Translation		Rotation		
Größe, Formelzeichen	Einheit	Größe, Formelzeichen	Einheit	
Weg	m	Winkel	rad = 1	
s,ds		$\varphi, d\varphi$		
Geschwindigkeit	$\frac{m}{s}$	Winkelgeschwindigkeit	$\frac{rad}{s} = \frac{1}{s}$	
$\vec{v} = \frac{ds}{dt}$		$\vec{\omega} = \frac{d\varphi}{dt}$		
Beschleunigung	$\frac{m}{s^2}$	Winkelbeschleunigung	$\frac{rad}{s^2} = \frac{1}{s^2}$	
$\vec{a} = \frac{dv}{dt} = \frac{d^2s}{dt^2}$		$\vec{\alpha} = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$		
Masse	kg	Massenträgheitsmoment	$kg \ m^2$	
m		$artheta = \sum_i \Delta m_i r_i^2$		
Kraft	$kg\frac{m}{s^2} = N$	Drehmoment $\vec{M} = \vec{r} \times F$	Nm	
$F = m\vec{a} = \frac{dp}{dt}$		$\vec{M} = \vartheta \vec{\alpha} = \frac{dL}{dt}$		
Impuls	$kg\frac{m}{s} = Ns$	Drehimpuls	$kg\frac{m^2}{s} = Nms$	
$p = m\vec{v}$		$ec{L} = \vartheta \vec{\omega}$		
Kraftkonstante	$\frac{N}{m}$	Winkelrichtgröße	$N \frac{m}{r a d^2} = J$	
$c = \left \frac{F}{s} \right $		$c^* = \left \frac{M}{\varphi} \right $		
Arbeit	Nm = J = Ws	Arbeit	Nm = J = Ws	
dW = F ds		$dW = M d\varphi$		
Spannarbeit	J	Spannarbeit	$N m rad^2 = J$	
$W = \frac{1}{2}c s^2$		$W = \frac{1}{2}c^*\varphi^2$		
kinetische Energie	J	kinetische Energie	J	
$E_{kin,trans} = \frac{1}{2}mv^2$		$E_{kin,trans} = \frac{1}{2}\vartheta\omega^2$		
Leistung	$W = \frac{J}{s}$	Leistung	$W = \frac{J}{s}$	
$P = \frac{dW}{dt} = Fv$		$P = \frac{dW}{dt} = \vec{M}\vec{\omega}$		

1.7.7 Der Drehimpulserhaltungssatz

Drehimpuls \vec{L} : Vektor mit Richtung || zur Drehachse für Massenpunkt. Die Richtung ergibt sich aus dem Umlaufsinn, der sich mit der "Rechten-Hand-Regel" bestimmen läßt.

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times (m\vec{v})$$

$$\vec{L} = \vartheta \vec{\omega}$$

Es gilt: Der gesamte Drehimpuls eines abgeschlossenen Systems (= Summe der Einzeldrehimpulse) ist konstant. Ein abgeschlossenes System ist dabei ein System, auf das kein resultierendes äußeres Drehmoment wirkt. (Drehimpulserhaltungssatz, $\vec{L}ES$)

1.8 Die Mechanik starrer Körper

1.8.1 Trägheitsmoment ausgedehnter Körper

Trägheitsmomente sind immer bezüglich einer bestimmten Achse definiert. Für verschiedene Drehachsen existieren verschiedene Trägheitsmomente.

Bis jetzt: Körper mit einem Massenpunkt

 $\vartheta = m r^2$

 ϑ : Trägheitsmoment

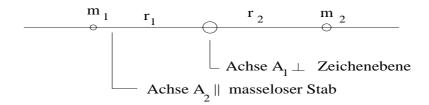
m: Masse

r: Abstand der Masse von der Drehachse

mehrere Massenpunkte mi

$$\vartheta = \sum_{i} \vartheta_{i} = \sum_{i} mr_{i}^{2}$$

Beispiel:



ausgedehnte Körper kontinuierlicher Massenverteilung

$$\Rightarrow \text{ Integration}$$

$$\alpha \vartheta = r^2 \, dm = r^2 \, \varrho \alpha V \qquad \alpha \vartheta \colon \text{ Beitrag von } dm \text{ zu } \vartheta$$

$$\varrho = \frac{m}{V} \colon \text{ Dichte}$$

$$V \colon \text{ Volumen}$$

$$\vartheta = \int r^2 \, dm = \varrho \int r^2 \, dV$$

$$= \varrho \int \int \int r^2(x,y,z) \, dx \, dy \, dz$$

Einfache Beispiele:

• Ring oder Hohlzylinder um eigene Achse

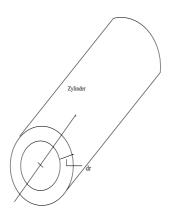
$$\begin{split} r &= const \\ \vartheta &= \int r^2 \, dm = r^2 \int \, dm \\ \vartheta &= mr^2 \end{split}$$

• Scheibe oder Vollzylinder

Geringeres ϑ als Hohlzylinder. Gleiche Masse und gleicher Radius gegenüber dem Hohlzylinder, da die Masse "im Mittel" an der Drehachse liegt.

Methode: Aufsummierung der gleichen Volumenelemente mit gleichem Radius als konzentrische Ringe.

$$\begin{split} dm &= \varrho \, dV = \varrho \, U \, l \, dr \\ &= \varrho \, 2\pi r \, l \, dr \\ \vartheta &= \int\limits_0^r r^2 \, dm = \int\limits_0^r r^2 \, \varrho \, 2\pi r \, l \, dr \\ \vartheta &= 2\pi l \varrho \int\limits_0^r r^3 \, dr \\ \vartheta &= 2\pi l g \left[\frac{r^4}{4}\right]_0^r \\ \vartheta &= 2\pi l g \left(\frac{r^4}{4} - 0\right) \\ \vartheta &= \underbrace{\pi r^2 l g}_{=V \, \varrho = m} \frac{2r^2}{4} = \frac{1}{2} m \, r^2 \end{split}$$



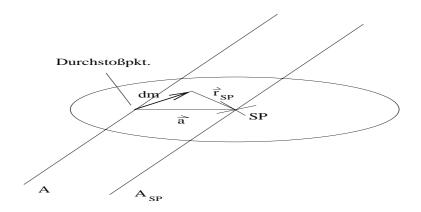
• Homogener Stab (dünn), um seinen Schwerpunkt

L: Gesamtlänge des Stabes

$$\begin{array}{l} \varrho_L := \frac{m}{L} \\ \vartheta = 2\frac{\vartheta}{2} = 2\int_0^{\frac{L}{2}} l^2 \, dm \\ \vartheta = 2\int_0^{\frac{L}{2}} l^2 \, \varrho_L \, dl \\ \vartheta = 2\varrho_L \int_0^{\frac{L}{2}} l^2 \, dl = 2\varrho_L \big[\frac{l^3}{3}\big]_0^{\frac{L}{2}} \\ \vartheta = 2\varrho_L \frac{1}{3} \frac{L^3}{8} = \frac{1}{12}\varrho_L L^3 \\ \vartheta = \frac{1}{12} m \, L^2 \\ \text{Bei der Rotation um das Stabende:} \\ \vartheta = \int_0^L l^2 \, dm = \varrho_L \int_0^L l^2 \, dl = \varrho_L \big[\frac{l^3}{3}\big]_0^L \\ \vartheta = \varrho_L \frac{L^3}{3} = \frac{1}{3} m \, L^2 \end{array}$$

1.8.2 Der Satz von Steiner

gegeben: ϑ_{SP} bezüglich Achse A_{SP} die durch den Schwerpunkt SP geht. gesucht: ϑ bezüglich Achse A, die nicht durch SP geht, wobei $A \parallel A_{SP}$.



$$\begin{split} \vec{r} &= \vec{a} + \vec{r}_{SP} \\ \vartheta &= \int r^2 \, dm = \int (\vec{a} + \vec{r}_{SP})^2 \, dm \\ &= \int a^2 \, dm + \int 2 \vec{a} \vec{r}_{SP} \, dm + \underbrace{\int r_{SP}^2 \, dm}_{\vartheta_{SP}} \\ &= a^2 \underbrace{\int dm + 2 \vec{a} \int r_{SP} \, dm + \vartheta_{SP}}_{=m} \\ \vartheta &= m \, a^2 + \vartheta_{SP} \qquad \textbf{Satz von Steiner} \end{split}$$

 ϑ_{SP} : Trägheitsmoment bzgl. Achse durch SP

 ϑ : Trägheitsmoment durch neue Achse, die zu obiger parallel ist

a: Abstand der beiden Achsen

1.8.3Zylinder auf schiefer Ebene

Drehachse ist die momentane Auflageachse ($\Rightarrow a = r$)

$$\begin{array}{ll} \Rightarrow \ \vartheta = \vartheta_{SP} + mr^2 & \text{(Satz von Steiner)} \\ &= \frac{1}{2}mr^2 + mr^2 & \text{(Vollzylinder)} \\ &= \frac{3}{2}mr^2 & (\vartheta = 2mr^2 \text{ für Hohlzylinder)} \\ M = F_\perp r = mgr \sin \varphi \\ M = \vartheta \dot{\omega} \Rightarrow \dot{\omega} = \frac{M}{\vartheta} \\ \Rightarrow \ a = r\frac{M}{\vartheta} \\ a = \frac{mgr^2 \sin \varphi}{\frac{3}{2}mr^2} = g\frac{\sin \varphi}{\frac{3}{2}} \\ a < g \sin \varphi & (\longrightarrow \text{Beschleunigung bei reibungslosem Gleiten)} \end{array}$$

Translation und Rotation rollender Körper 1.8.4

Beispiel: Der rollende Zylinder, Drehachse = Auflageachse

Abstand Drehachse - Schwerpunkt: r

$$\Rightarrow \vartheta = \vartheta_{SP} + mr^2$$
 (Satz von Steiner)

besser: $v_{SP} = \omega r$ (Geschwindigkeit des SP), sogenannte Rollbedingung (für

Rollen ohne Schlupf)

KINETISCHE ENERGIE:

$$E_{kin} = \frac{\vartheta}{2}\omega^2 = \frac{\vartheta_{SP}}{2}\omega^2 + \frac{mr^2}{2}\omega^2$$

$$E_{kin} = \frac{\vartheta_{SP}}{2}\omega^2 + \frac{m}{2}v_{SP}^2$$

$$E_{kin} = \frac{1}{2}\vartheta_{SP}\omega^2 + \frac{1}{2}m\,v_{SP}^2$$
Cosamte kinetische Eporgie – kinetische

Gesamte kinetische Energie = kinetische Energie der Rotation um den SP + kinetische Energie der Translation des SP

Allgemeine Bewegung: Translation des SP + Rotation um den SP

1.8.5 vektorielle Schreibweise bei Drehbewegungen

 $\vec{\omega}$: Vektor parallel Drehachse Richtung gemäß Rechte-Hand-Regel $|\vec{\omega}|=|\dot{\varphi}|$

Drehimpuls:

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\Rightarrow \vec{L} \perp \vec{r}$$

$$\wedge \vec{L} \perp \vec{p}$$

$$\wedge |\vec{L}| = |rp \sin \alpha|$$

wobei: $\alpha = <$) (\vec{r}, \vec{p}) (Zwischenwinkel zu \vec{r} und \vec{p})

$$\vec{L} = \vartheta \vec{\omega}$$

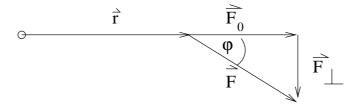
ACHTUNG: ϑ ist nur in einfachen Fällen ein Skalar. Im Allgemeinen ist ϑ ein sogenannter Tensor. Die Folge ist, daß \vec{L} , $\vec{\omega}$ nicht automatisch parallel sind!

JEDOCH: Für jeden noch so komplizierten Körper existieren 3 Achsen, die sogenannten Hauptträgheitsachsen für die $\vec{L} \mid\mid \vec{\omega}$ gilt. Für symmetrische Körper entsprechen sie gerade den Symmetrieachsen, die aufeinander senkrecht stehen.

Drehmoment:

$$\vec{M} = \vec{r} \times \vec{F}$$

$$|F_{\perp}| = F \sin \varphi$$



 \vec{F} : zieht nur am Lager der Drehachse

 $\vec{M} = \vec{L}$ (aus dem 2. Newtonschen Gesetz)

1.8.6 Der Kreisel

Der kräftefreie symmetrische Kreisel

Kreisel: Rotierender Körper um festgelegte Drehachse

SYMMETRISCHER KREISEL: Bei Verwendung eines Körpers mit zwei gleichen Haupt-

trägheitsmomenten z.B. ein rotationssymmetrischer Kreisel.

Wirken auf einen Kreisel keine realen äusseren Drehmomente, so ist $\vec{L}=const~(\vec{L}ES)$ ein sog. "Kräftefreier Kreisel".

Um einen kräftefreien Kreisel auf der Erde beobachten zu können,darf die Gewichtskraft den Kreisel nicht mehr beeinflussen. Daher lagern wir ihn auf eine punktförmige Auflage in seinem Schwerpunkt. So bewirkt die Gewichtskraft kein Drehmoment mehr.

Hauptträgheitsachsen durch den SP:

• Achse mit größtem ϑ : A_1

• Achse mit kleinstem ϑ : A_2

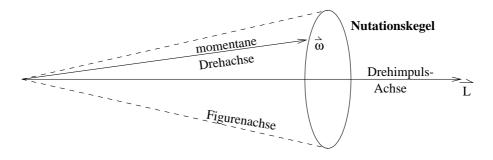
 \bullet Achse senkrecht zu beiden: A_3

Um A_1 , A_2 , A_3 ist eine Rotation auch ohne ein Lager möglich. Daher nennt man sie Freie Achsen.

Nutation

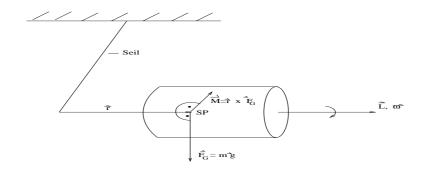
Wenn ein Kreisel um eine seiner Hauptträgheitsachsen (freie Achsen) rotiert, dann gilt $\vec{\omega} \parallel \vec{L}$ und aus $\vec{L} = const$ folgt, daß $\vec{\omega} = const$. So liegt eine STABILE ROTATION UM EINE FESTE DREHACHSE (Fall 1) vor.

Bei einem Kreisel, der nicht um eine seiner Hauptträgheitsachsen rotiert (z.B. Fall 1+ seitl. Schlag auf die Drehachse), gilt $\vec{\omega}$ nicht $\parallel \vec{L}$. Da aber trotzdem $\vec{L}=const$ (wegen $\vec{M}=0$) bewegen sich $\vec{\omega}$ und die Symmetrieachse (sog. Figurenachse) auf Kegelmänteln um den ortsfesten \vec{L} (Drehimpuls). Dies nennt man **Nutation**. $\vec{L}=\vartheta\vec{\omega}$



Drehmomente am Kreisel; Präzession

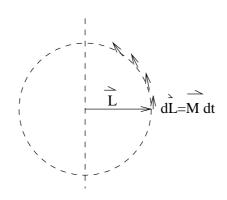
Es sei $\vec{\omega} \parallel$ Hauptträgheitsachse (also keine Nutation!) und es sei $\vec{M} \neq 0$. Experiment: Man hänge ein rotierendes Rad, durch dessen Achse ein Stab führt, an diesem Stab an ein Seil.



$$\begin{array}{ccc} \vec{\omega} \parallel \vec{L}; & \vec{L} = \vartheta \vec{\omega} \\ \vec{M} = \vec{r} \times \vec{F}_G \\ \vec{M} = \vec{L} = \frac{d\vec{L}}{dt} \Rightarrow d\vec{L} = \vec{M} \ dt \\ \alpha \vec{L} \parallel \vec{M} \ ; & \vec{M} \perp \vec{F}_G \end{array}$$

Daraus erkennen wir, daß der Kreisel \perp zur ausführenden Kraft wirkt. Dies nennt man die **Präzessionsbewegung**.

Dauer T_P eines Präzessionsumlaufs:



$$\begin{split} &1 \text{ Umlauf: } \int dL = 2\pi L \\ &\int dL = \int M \ dt = M \int _0^{T_P} dt = M \ T \\ &2\pi L = M \ T \\ &T_P = 2\pi \frac{L}{M} \\ &\omega_P = \frac{2\pi}{T_P} = \frac{M}{L} = \frac{\vec{F} \ r \sin \varphi}{\vartheta \ \omega_r} \end{split}$$

1.8.7 Gleichgewicht am starren Körper

Statik: "Was muß ich tun, damit ein Körper im Zustand der Ruhe verbleibt?"

- 1. Vermeidung von Translation des SP $\Rightarrow \sum_i \vec{F}_i = 0$
- 2. Vermeidung von Rotation um den SP $\Rightarrow \sum_i \vec{M}_i = 0$

IM STATISCHEN GLEICHGEWICHT IST SOWOHL DIE SUMME ALLER AN EINEM KÖRPER ANGREIFENDEN KRÄFTE ALS AUCH DIE SUMME DER AUF IHN WIRKENDEN DREHMOMENTE NULL.

38

Arten von Gleichgewicht:

• Stabiles Gleichgewicht Der Körper kehrt bei kleinen Auslenkungen aus der Ruhelage selbständig in diese zurück.

Beispiele:

• Indifferentes Gleichgewicht Der Körper verbleibt bei kleiner Auslenkung an einem Ort.

Beispiel: Körper auf Ebene

• Instabiles Gleichgewicht Bei infinitesimaler Auslenkung erhält der Körper eine Position und entfernt sich um eine makroskope, endliche Auslenkung.

Hooksches Gesetz der Torsion, Drehschwingung

Bei der Torsion eines Drahtes oder dünnen Stabes ist das rückstellende Drehmoment proportional zum Verdrillungswinkel φ .

 $\vec{M} = -D_{\varphi}\varphi$ Hooksches Gesetz der Torsion D_{φ} : Torsionsfederkonstante Bei der Schwingung einer Torsionsfeder folgt aus dem Hookschen Gesetz ein elastisches Moment und eine harmonische Schwingung.

$$\varphi(t) = \varphi_0 \sin \omega t$$

$$\dot{\varphi}(t) = \varphi_0 \omega \cos \omega t$$

$$\ddot{\varphi}(t) = -\omega^2 \varphi_0 \sin \omega t$$

(1)
$$M = \vartheta \ddot{\varphi}(t) = -\vartheta \omega^2 \varphi(t)$$

$$(2) M = -D_{\varphi}\varphi(t)$$

(1)
$$\wedge$$
 (2) $\Rightarrow \vartheta \omega^2 = D_{\varphi} \Rightarrow \omega = \sqrt{\frac{D_{\varphi}}{\vartheta}}$
(vgl.: bei Feder: $\omega = \sqrt{\frac{D}{m}}$).

(vgl.: bei Feder:
$$\omega = \sqrt{\frac{D}{m}}$$
).

1.9 Gravitation und Keplersche Gesetze

1.9.1 Das Newtonsche Gravitationsgesetz

Zwischen zwei Massen m_1 und m_2 wirkt eine anziehende Kraft, die zu m_1 und m_2 direkt und zum Quadrat ihres Abstandes indirekt proportional ist.

$$F_G = -\gamma \frac{m_1 m_2}{r^2}$$

$$\gamma = 6,673 \ 10^{-11} \frac{N \ m^2}{k \ g^2}$$
 Gravitationskonstante
Die Richtung von \vec{F} ist antiparallel zu \vec{r} .

Die Kraft F_G auf die Probemasse m_P im Einfluß der Masse M (z.B. die Erde):

$$F_G = \frac{-\gamma M}{r^2} m_P$$

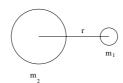
Da $F_G = m g$ gilt $g = -\frac{\gamma M}{r^2}$, die **Gravitationsfeldstärke**, die an der Erdoberfläche $g = 9,81 \frac{m}{\epsilon^2}$ beträgt.

Feldstärke, Potential und potentielle Energie im Gra-1.9.2vitationsfeld

Die Gravitationskraft ist eine konservative Kraft. Eine investierte Arbeit bewirkt

$$\overrightarrow{dW} = \sum_{sei \ \overrightarrow{F} || d\overrightarrow{s}} F \ ds = + \gamma \frac{m_1 m_2}{r^2} \ ds$$

Bewegung von m_1 im Feld von $m_2 \parallel zu \vec{r}$:



$$\begin{split} W &= \int\limits_{r_1}^{r_2} F \, ds = \gamma \, m_1 m_2 \, \int\limits_{r_1}^{r_2} \frac{1}{r^2} \, ds \\ W &= -\gamma \, m_1 m_2 (\frac{1}{r_2} - \frac{1}{r_1}) = \Delta E_{pot} \end{split}$$

$$r_2 > r_1$$

$$\frac{1}{r_2}<\frac{1}{r_1}$$
größerer Abstand = Zuwachs von E_{pot} $(\frac{1}{r_2}-\frac{1}{r_1})<0$;
$$-(\frac{1}{r_2}-\frac{1}{r_1})>0$$

DaFeine konservative Kraft ist, ist ΔE_{pot} unabhängig vom Weg von \vec{r}_1 nach $\vec{r}_2.$

 E_{pot} ist maximal für $r \longrightarrow \infty$

Setze $E_{pot}=0$ für $r\longrightarrow\infty$ (neuer Bezugspunkt), dann ist:

$$E_{pot} = -\frac{\gamma m_1 m_2}{r}$$

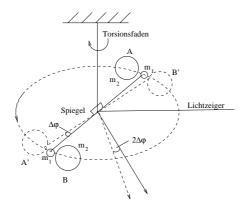
Dies nennt man die **Bindungsenergie**, mit der die Massen m_1 und m_2 aneinander gebunden sind.

Definition des Gravitationspotentials φ :

 $\varphi = -\frac{\gamma m}{r},$ das Potential im Gravitationsfeld der Masse m.

1.9.3 Bestimmung der Gravitationskonstanten γ

Gravitationsdrehwaage nach Cavandish (1798):



- Kleine Kugeln an einem (beinahe) masselosen Stab an einem Torsionsfaden drehbar. m_1 und m_2 bekannt. D_{φ} aus Schwingungsdauer: $\frac{2\pi}{T} = \sqrt{\frac{D_{\varphi}}{\vartheta}}$.
- \bullet Umlagerung der Massen m_2
 - \implies Kraft von m_2 auf m_1 wechselt Vorzeichen.
 - ⇒ Drehmoment auf den Torsionsfaden wechselt Vorzeichen.

$$D_{\varphi} = \underbrace{\Delta \varphi}_{Spiegeldrehung} = \Delta M = \underbrace{2}_{Vorzeichenwechsel} \cdot \underbrace{2}_{2 \ Kugelpaare} \cdot \gamma \frac{m_1 m_2}{r^2} \frac{l}{2} \cos \varphi$$
 Anwendung: Bestimmung der Masse der Erde:

 $g=\gamma\frac{m_E}{r_E} \Rightarrow m_E=r_E^2\frac{g}{\gamma}$ $g\colon$ z.B. aus ω des mathematischen Pendels: $\omega=\sqrt{\frac{g}{l}}$

 $\implies m_E = 5,97 \bullet 10^{24} kg$

1.9.4 Planetenbahnen und Keplersche Gesetze

Von Johannes Kepler aufgrund empirischer Daten zur Planetenbewegung gefunden:

- 1. Keplersches Gesetz Die Planeten bewegen sich auf Ellipsen in deren einem Brennpunkt die Sonne steht.
- 2. Keplersches Gesetz Der Radiusvektor Sonne-Planet überstreicht in gleichen Zeiten gleiche Flächen.
- 3. Keplersches Gesetz Die Quadrate der Umlaufzeiten verschiedener Planeten verhalten sich wie die Kuben der großen Bahnachsen.

Die Erklärung folgt aus dem Gravitationsgesetz und dem Drehimpulserhaltungssatz. So folgt das 2. Keplersche Gesetz direkt aus dem $\vec{L}ES$ und das 3. Keplersche Gesetz aus dem Gravitationsgesetz, wobei hier die Gravitationskraft Zentralkraft ist.

Spezialfall: Kreisbahn

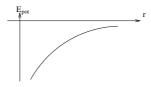
$$m_P r_P \omega_P^2 = \gamma \frac{m_S m_P}{r_P^2}$$

$$r_P^3 \frac{4\pi^2}{T^2} = \gamma \, m_S$$

$$r_P^3 rac{4\pi^2}{T^2} = \gamma m_S$$
 $\frac{r_P^3}{T_P^2} = rac{\gamma m_S}{4\pi^2} = const$ für alle Planeten.

Gebundene und ungebundene Zustände

$$E_{pot} = -\gamma \frac{m_1 m_2}{r}$$



$$E_{pt} < 0 \; ; \qquad E_{pot} \longrightarrow 0 \; \text{für} \; r \longrightarrow \infty$$

Gesamtenergie E:

$$E = E_{kin} + E_{pot}$$

$$E = \frac{m_2}{2}v^2 - \gamma \frac{m_1 m_2}{r}$$

 $E \geq 0$: m_2 kann sich von m_1 beliebig weit entfernen \rightarrow ungebundener Zustand

E < 0: m_2 kann sich NICHT beliebig weit von m_1 entfernen \rightarrow gebundener Zustand

Energie, um das Gravitationsfeld der Erde zu verlassen:

$$E \ge 0$$

$$\frac{m}{2}v_P^2 - \gamma \frac{m_E}{r_E^2} \ m \ge 0$$

$$v_E^2 \ge 2gr_E$$

Fluchtgeschwindigkeit: $v \ge \sqrt{2gr_E} = 11, 2\frac{km}{s}$

Satellitenbahnen

E < 0: Ellipsen \longrightarrow gebunden (Spezialfall: Kreis)

E = 0: Parabel \longrightarrow ungebunden

E > 0: Hyperbel \longrightarrow ungebunden

Deformation fester Körper 1.10

Dehnung und Zugversuche 1.10.1

Bis jetzt haben wir alle Körper als starre Körper behandelt. In Wirklichkeit verändern jedoch feste Körper ihre Form unter dem Einfluß von Kräften.

Es gibt zwei Fälle:

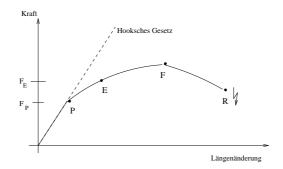
1. Elastische Verformung

Sie verschwindet, sobald die verformende Kraft weggenommen wird. (Bsp.: Hooksche Feder)

2. Plastische Verformung

Sie bleibt auch nach Wegfall der verformenden Kraft bestehen. (Bsp.: Blechschaden am Auto nach Unfall)

Spannungs-Dehnungs-Diagramm:



Achtung! Der Verlauf der Kurve ist stark materialabhängig!

P: Proportionalitätsgrenze

für $F < F_P$ gilt: $\Delta l \sim F$

E: Elastizitätsgrenze

für $F < F_E$ Dehnung reversibel

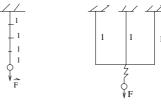
F: Festigkeitsgrenze

R: Reißgrenze

1.10.2 Spannung, Dehnung und Hooksches Gesetz

Wir setzen voraus, daß ein Faden unter Einwirkung einer Zugkraft gedehnt wird und daß die Kraft noch unterhalb der Proportionalitätsgrenze liegt $\Rightarrow \Delta l \sim F$. Wovon hängt Δl ab?

- Von der Kraft (siehe oben)



Serienschalung

Parallelschaltung

• Vom Querschnitt

"Parallelschaltung"

n Fäden: auf jeden Faden wirkt nur noch $\frac{F_G}{n} \Rightarrow n$ -facher Querschnitt: $\frac{\Delta l}{n}$

• Vom Material des Fadens

$$\Delta l = \frac{1}{E} \frac{l}{A} F$$

(1) (masseloser Faden!)

l: Fadenlänge

A: Querschnittsfläche

F: Zugkraft

E: sog. E-Modul oder Elastizitätsmodul (hängt vom Material ab)

DEFINITIONEN:

 $\varepsilon := \frac{\Delta l}{l}$ relative Längenänderung oder Dehnung

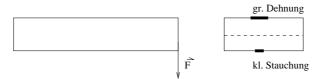
 $\sigma:=\frac{F}{A}$ Kraft pro Querschnittsfläche oder Zugspannung (bzw. bei Druckbelastung Druckspannung)

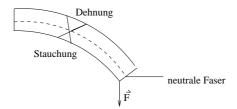
Umforming von (1):
$$\underbrace{\frac{\Delta l}{l}}_{\varepsilon} = \frac{1}{\varepsilon} \underbrace{\frac{F}{A}}_{\sigma} \Rightarrow \varepsilon = \frac{1}{E} \sigma$$

$$\Rightarrow \sigma = E \varepsilon \qquad \text{Hooksches Gesetz}$$

Die Spannung ist proportional zur Dehnung.

Wie verhält sich ein Balken?





1.10.3 Querkontraktion

Bei der Dehnung eines Fadens oder Stabes nimmt die Dichte in ⊥ Richtung zur Dehnung ab. Dies nennt man Querkontraktion.

 $\begin{array}{l} \frac{\Delta d}{d}\colon \text{ relative Dicken\"{a}nderung} \\ \frac{\Delta l}{l}\colon \text{ relative L\"{a}ngen\"{a}nderung} \\ \mu = |\frac{\frac{\Delta d}{d}}{\frac{\Delta l}{d}}| \qquad \textbf{Poisson-Zahl} \end{array}$

Volumenänderung (quadrat. Querschnitt des Stabes)

$$\begin{split} \Delta V &= (d - \Delta d)^2 (l + \Delta d) - d^2 l \\ &= (d^2 - 2d\Delta d + \Delta d^2) (l + \Delta l) - d^2 l \\ &\approx d^2 l + d^2 \Delta l - 2d\Delta dl - 2d\Delta d\Delta l - d^2 l \\ &\approx d^2 \Delta l - 2dl\Delta d \end{split}$$

Das Produkt zweier kleiner Größen ist vernachlässigbar klein.

$$\begin{split} \frac{\Delta V}{V} &= \frac{d^2 \Delta^l}{d^2 l} - \frac{2d l \Delta d}{d^2 l} \\ &= \frac{\Delta l}{l} - \frac{2\Delta d}{d} \\ &= \frac{\Delta l}{l} (1 - 2\frac{\frac{\Delta d}{d}}{\frac{d}{l}}) \\ \frac{\Delta V}{V} &= \frac{\Delta l}{l} (1 - 2\mu) = \varepsilon (1 - 2\mu) \end{split}$$

1.10.4 Kompressibilität

$$\frac{\Delta V}{V} = -\varepsilon (1 - 2\mu)$$

Druck längs der x-, der y- und der z-Achse:

$$\Delta V = \underbrace{\Delta V_x}_{\text{durch Druck in } x-Richtg.} + \Delta V_y + \Delta V_z$$

⇒ Isotroper Druck(von allen Seiten gleicher Druck)

$$\begin{array}{l} \frac{\Delta V}{V} = -3\varepsilon(1-2\mu) = -3\frac{p}{E}(1-2\mu) \\ \frac{\Delta V}{V} = -3\frac{p}{E}(1-2\mu) & \text{mit } \varepsilon = \frac{p}{E} \end{array}$$

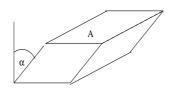
Im Dreidimensionalen heißt Kraft/Fläche Druck: $p = \frac{F}{A}$

Kompressibilität κ

$$\begin{array}{l} \frac{\Delta V}{V} = -\kappa \, p \\ \Rightarrow \, \kappa = \frac{3}{E} (1 - 2 \mu) \\ \kappa = \frac{1}{K} \qquad K \text{ heißt Kompressions modul} \end{array}$$

Scherung und Torsion 1.10.5

Scherung

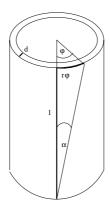


Die Kraft F_s wirkt tangential zur Fläche A (Scherkraft) und bewirkt eine Scherung um den Winkel α .

Scherspannung τ : $\tau := \frac{F_s}{A}$

Es gilt: $\tau = G \alpha$ G: Torsions- oder auch Schermodul

Torsion eines dünnwandigen Rohres



dünnes Rohr:

Länge I, Radius
r, Torsionswinkel φ , Wandstärke $d \ll r$ Für kleine Winkel gilt: $\tan \alpha \approx \alpha \implies \alpha = \frac{r \varphi}{l}$ (< 5°)

$$\tau = G \, \alpha$$

$$\begin{split} F &= A\,\tau = \underbrace{\mathcal{A}}_{2\pi\,r\,d} G\,\alpha = 2\pi r\,d\,G\,\alpha \\ &= 2\pi r d\,G\,\frac{r\varphi}{l} \\ &= 2\pi r^2\frac{d\varphi}{l}G \end{split}$$

Drehmoment
$$M$$
:
$$M = Fr = 2\pi r^3 \frac{d \varphi}{l} G$$

$$M = D_{\varphi} \varphi$$

$$D_{\varphi} = \frac{2\pi r^3 d}{l} G$$

 D_{φ} : Torsionskonstante eines dünnwandigen Rohres.

Torsion eines Stabes (kreisförmiger Querschnitt)

Idee: Den Stab kann man als ineinandergeschachtelte dünne Rohre der Dicke d und der Federkonstanten $\alpha\,D_{\varphi}$. Die Federkonstanten der einzelnen Rohre addieren sich zu D_{φ} . Der Radius des Vollstabes sei R.

$$D_{\varphi} = \int_{R}^{A} \alpha D_{\varphi}$$

$$= \int_{0}^{R} \frac{2\pi r^{2} dr}{l} G$$

$$= 2\pi \frac{G}{l} \int_{0}^{R} r^{2} dr$$

$$= 2\pi \frac{G}{l} \frac{R^{4}}{4}$$

$$D_{\varphi} = \frac{\pi}{2} \frac{R^{4}}{l} G \sim R^{4}$$

 D_{φ} : Torsionsfederkonstante eines Vollstabes mit kreisförmigem Querschnitt.

1.10.6 Elastische Energie und Energiequelle

Dehnung eines Stabes (oder Drahtes)

$$\begin{array}{l} \sigma = \varepsilon E \\ \frac{F}{A} = E \frac{\Delta l}{l} \\ F = \underbrace{D}_{Federk\,onstante} \Delta l \end{array} \right\} D = \underbrace{\frac{E\,A}{l}}_{l} \quad \textbf{Federkonstante} \text{ eines Stabes oder Drahtes.}$$

Potentielle Energie

Arbeit beim Dehnen:

$$\begin{split} W &= \frac{D}{2} (\Delta l)^2 = \frac{E \, A}{2 \, l} \Delta l^2 \, \frac{l}{l} \\ &= \frac{1}{2} E \, \underbrace{A \, l}_{V \, olumen \, V} \underbrace{(\frac{\Delta l}{l})^2}_{\varepsilon} = \frac{1}{2} E \, V \, \varepsilon^2 \end{split}$$

Energiedichte w (elastische Energie pro Volumen)

$$w=rac{W}{V}=rac{E}{2}arepsilon^2$$
 für Dehnung.
Analog herzuleiten für Torsion:
 $w=rac{G}{2}lpha^2$ Energiedichte für Torsion

1.11 Ruhende Flüssigkeiten und Gase (Hydrostatik und Aerostatik)

1.11.1 Druck in ruhenden Flüssigkeiten (ohne Gravitation)

Flüssigkeiten nehmen jede beliebige Form an. Es gibt keine Scherkräfte in ruhenden Flüssigkeiten.

Eine Flüssigkeit übt auf Wände den Druck p aus.

$$p = \frac{Kraft}{Flaeche} = \frac{F}{A}$$

$$[p] = 1\frac{N}{m^2} = 1 pa$$

$$1 atm = 1,013 \ 10^5 pa \qquad (1\text{Atmosphäre} \approx 1 \text{ bar})$$

PASCALSCHES PRINZIP:

DER DRUCK IN EINEM GESCHLOSSENEN GEFÄSS IST OHNE GRAVITATION AN JEDEM ORT INNERHALB DER FLÜSSIGKEIT IN ALLEN RICHTUNGEN GLEICH.

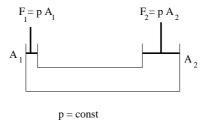
Bemerkungen:

p ist kein Vektor. Da keine Scherkräfte existieren, bewirkt p eine Kraft, die senkrecht auf der Oberfläche der Wand steht.

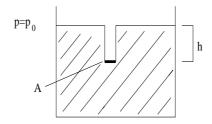
Anwendung ist z.B. die Hydraulik (z.B. Autobremsen)

$$\frac{F_1}{F_2} = \frac{A_1}{A_2}$$

1.11. RUHENDE FLÜSSIGKEITEN UND GASE (HYDROSTATIK UND AEROSTATIK)47



1.11.2 Gravitation bei Flüssigkeiten: der Schweredruck

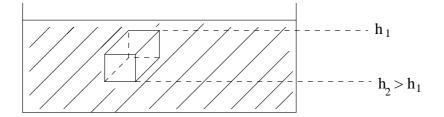


- Druck auf die Oberfläche der Flüssigkeit: p_0 (z.B. der Luftdruck von $1 atm = 10^5 pa$)
- horizontale Fläche A in der Tiefe h:
 - auf A wirkt p_0
 - auf A wirkt zusätzlich die Gewichtskraft der darüberliegenden Flüssigkeitssäule.

$$\begin{split} F &= p_0 \, A + mg \\ &= p_0 \, A + \varrho_A \underbrace{V \, g}_{V = A \, h} \qquad \varrho_A : \text{Dichte in H\"ohe } h \\ F &= p_0 \, A + \varrho_A \, h \, g \, A \\ p(h) &= p_0 + \underbrace{\varrho_A \, h \, g}_{Schweredruck \, in \, der \, Tiefe \, h} \end{split}$$

1.11.3 Auftrieb; Prinzip von Archimedes

Ein Körper in einer Flüssigkeit (oder einem Gas) erfährt durch den Schweredruck eine nach oben gerichtete Kraft, den sog. Auftrieb.



$$\left. \begin{array}{ccc} Kraft\ von\ oben: & F_1 = (p_0 + \varrho_A\ h_1\ g)\ A \\ Kraft\ von\ unten: & F_2 = (p_0 + \varrho_A\ h_2\ g)\ A \end{array} \right\} h_2 > h_1 \Rightarrow F_2 > F_1 \\ F_2 - F_1 = \varrho_A (h_2 - h_1) A\ g = \varrho_A\ V\ g = mg \\ F_A = m_A\ g \qquad \textbf{Prinzip\ von\ Archimedes}$$

Kraft auf Körper in Flüssigkeit

$$\begin{split} \vec{F} &= \underbrace{\vec{F}_A}_{nach\ oben} + \underbrace{\vec{F}_G}_{nach\ unten} \\ F &= \underbrace{\varrho_{Fl}}_{m_{Fl}} V g - \underbrace{\varrho_K}_{Masse\ des\ Koerpers} V g \\ F &= (\varrho_{Fl} - \varrho_K) V g \end{split}$$
 Fälle:

- 1. $\varrho_K < \varrho_{Fl} \Rightarrow F_A > F_G \Longrightarrow$ Körper steigt auf, schwimmt
- 2. $\varrho_K = \varrho_{Fl} \Rightarrow F_A = F_G \Longrightarrow$ Körper schwebt
- 3. $\varrho_K > \varrho_A \Rightarrow F_A < F_G \Longrightarrow$ Körper sinkt

Die Folge davon ist, daß ein schwimmender Körper so tief eintaucht, bis das Gewicht der verdrängten Flüssigkeit dem Gewicht des Körpers gleich ist.

1.11.4 p(h) bei Gasen: die barometrische Höhenformel

Die Dichte ϱ bei Gasen hängt vom Druck ab:

$$\varrho \sim p$$
, d.h. $\frac{\varrho}{p} = \frac{\varrho_0}{p_0} = const$ für $T = const$ (T : Temperatur) ϱ_0 : Dichte an der Erdoberfläche p_0 : Druck an der Erdoberfläche Druckänderung dp von dh abhängig: $dp = -\varrho g dh = \varrho p \frac{\varrho_0}{p_0}$ $dp = -p \frac{\varrho_0}{p_0} g dh$
$$\int_{p_0}^{p(h)} \frac{dp}{p} = -\frac{\varrho_0}{p_0} g \int_0^h dh$$

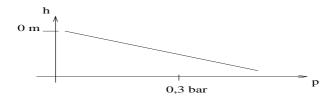
$$\ln p - \ln p_0 = \ln \frac{p}{p_0} = -\frac{\varrho_0}{p_0} g h$$

$$\frac{p}{p_0} = \exp\left[\frac{\varrho_0}{p_0} g h\right]$$

 $p = p_0 \exp(-\frac{\varrho g}{p_0}h)$ Barometrische Höhenformel

1.11. RUHENDE FLÜSSIGKEITEN UND GASE (HYDROSTATIK UND AEROSTATIK)49

Druck in Flüssigkeiten:



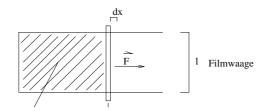
Druck in Gasen:

nimmt exponentiell mit der Höhe ab

1.11.5 Oberflächenspannung und Kapillarität

Aufgrund von anziehenden Kräften zwischen den Molekülen einer Flüssigkeit benötigt man die Energie dE, um eine Oberfläche um dA zu vergrößern.

 $dE = \sigma dA$ σ : Oberflächenspannung



Flüssigkeitslamelle bewegliche Barriere mit dem Umfang U

$$\left. \begin{array}{ll} \text{Barriere mit Umfang U: } F_{\sigma} = \sigma \, U & F_{G} = mg \\ dE = \underbrace{2}_{2 \; Oberflaechen} & \sigma \, l \, dx \\ dE = F \, dx \end{array} \right\} F = 2 \, \sigma \, l \quad \text{Die R\"{u}ckstellkraft ist unabh. von A}$$

Druck in Flüssigkeitskugel

Oberflächenenergie:
$$W = \underbrace{4\pi r^2}_A \sigma$$

$$\frac{dW}{dr} = 4\pi 2r\sigma \qquad dW = 8\pi r \sigma dr \qquad (1)$$
andererseits $dW = F dr$

$$dW = p 4\pi r^2 dr \qquad (2)$$

$$(1) = (2) : \quad p 4\pi r^2 dr = 2 4\pi r \sigma dr$$

$$\Rightarrow p = \frac{2\sigma}{r}$$
Folgen:

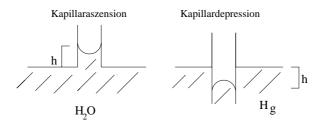
• Tröpfchenbildung

- Vereinigung von Tröpfchen
- Regen
- \bullet Hüpfen von Hg-Tröpfchen (großes σ)

Druck in einer Seifenblase

$$p = \frac{3\sigma}{r}$$
, da 2 Oberflächen

Kapillarität und Grenzflächenspannung

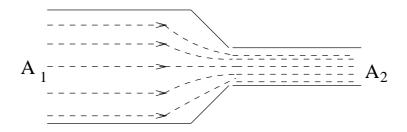


Erzeugung von zusätzlicher Grenzfläche

setzt Energie frei erfordert Energie Gleichgewicht $\frac{2\sigma}{r} = \varrho\,h\,p$ Kapillardruck Schweredruck

1.12 Strömende Flüssigkeiten und Gase (Hydrodynamik und Aerodynamik)

1.12.1 Die Kontinuitätsgleichung (inkompressible Strömung)



Die sog. Flußlinien verlaufen an jeder Stelle parallel zum Geschw.vektor \vec{v} .

STATIONÄRE STRÖMUNG: \vec{v} hängt nur vom \vec{r} (Ort) ab und nicht von der Zeit. \implies Stromlinien stimmen mit den Strombahnen überein

INKOMPRESSIBLE STRÖMUNG: Dichte ϱ ist konstant. Es gibt sie bei Flüssigkeiten und langsam strömenden Gasen.

Verengung eines Rohres:

Pro Zeiteinheit muß durch jeden Querschnitt des Rohres die gleiche Masse strömen.

Daher muß das Medium bei A_2 (Verengung) schneller als bei A_1 strömen.

$$\frac{dm_1}{dt} = \varrho \frac{dv_1}{dt} = \varrho A_1 \frac{dx_1}{dt} = \varrho_1 A_1 v_1$$

$$\frac{dm_2}{dt} = \varrho \frac{dv_2}{dt} = \varrho A_2 \frac{dx_2}{dt} = \varrho_2 A_2 v_2$$

$$\frac{dm_1}{dt} = \frac{dm_2}{dt} \quad \Rightarrow \quad \varrho_1 A_1 v_1 = \varrho_2 A_2 v_2$$

Speziell für inkompressible Medien ($\varrho = const$):

 $A_1 v_1 = A_2 v_2$ Kontinuitätsgleichung

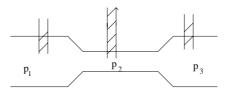
1.12.2 Potentielle und kinet. Energie in strömenden Medien: die Bernoulli-Gleichung

 $A_1v_1 = A_2v_2$

 $\Rightarrow v$ ändert sich mit A

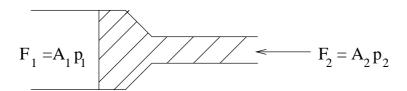
 $\Rightarrow E_{kin}$ ändert sich mit A

Woher kommt und wohin geht die zusätzliche kinet. Energie?



kein Kapillareffekt!

Durch Unterschiede im statischen Druck ändert sich zugleich die potentielle Energie des Mediums.



$$dW_1 = p_1 \underbrace{A_1 dx_1}_{dV_1}$$
 $dW_2 = F_2 dx_2 = p_2 \underbrace{A_2 dx_2}_{dV_2}$

$$\varrho = const$$
 \Rightarrow $dV_1 = dV_2 =: dV$

(1)
$$dW = dW_1 - dW_2 = (p_1 - p_2)dV = \frac{dm}{\varrho}(p_1 - p_2)$$

Wenn wir annehmen, daß keine Reibung entsteht und daß eine "ideale" oder reibungsfreie Strömung vorliegt, können wir feststellen, daß die Arbeit dW zu einer Änderung der kinet. Energie E_{kin} führt.

Bernoulli-Gleichung

$$(2) dW = dE_{kin} = \frac{dm_2}{2}v_2^2 - \frac{dm_1}{2}v_1^2$$

$$= \frac{dm}{2}(v_2^2 - v_1^2)$$

$$dm_1 = dm_2 = dm$$

$$(1) = (2) \Rightarrow \frac{dm}{2}(v_2^2 - v_1^2) = \frac{dm}{\varrho}(p_1 - p_2)$$

$$\frac{\varrho}{2}v_1^2 + \underbrace{p_1}_{statischer\ Druck} = \frac{\varrho}{2}v_2^2 + p_2 =: \underbrace{p_0}_{Gesamtdruck}$$

$$Gesamtdruck = statischer\ Druck\ bei\ v = 0$$

$$\underbrace{\frac{\varrho}{2}v_1^2}_{\text{statischer Pruck}} + \underbrace{p_1}_{\text{statischer Pruck}} = \underbrace{\frac{\varrho}{2}v_2^2 + p_2}_{\text{Gesamtdrue}} = \underbrace{p_0}_{\text{Gesamtdrue}}$$

 $v \neq 0 \Rightarrow \text{stat. Druck} < \text{Gesamtdruck}$

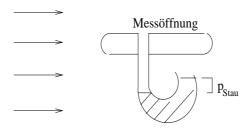
Im Gravitationsfall (zusätzlich Schweredruck):

$$p_1 + \frac{\varrho}{2}v^2 + \varrho hg = p_0 = const$$

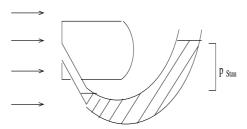
 $\frac{\varrho}{2}v^2\colon$ Staudruck $\varrho hg\colon$ Schweredruck $p_0\colon$ Gesamtdruck

Druckmessung

A) STATISCHER DRUCK:

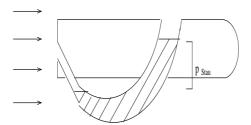


B) GESAMTDRUCK: sog. Pitol-Rohr



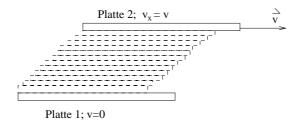
C) DYNAMISCHER DRUCK: sog. Prandelsches Staurohr

Differenz aus Gesamtdruck und stat. Druck. Aus $p_{Stau} \sim v^2$ folgt Geschw.messung.



1.12.3 Viskose Strömung zwischen Platten

Bislang haben wir die Reibung vernachlässigt. Ab jetzt betrachten wir Strömungen mit Reibung, d.h. VISKOSE STRÖMUNGEN. Einfachster Fall: zwei gegeneinander bewegte Platten, deren Spalt mit Öl, Luft etc. gefüllt ist.



Die Flüssigkeitsschichten gleiten aneinander vorbei, wodurch Reibung entsteht. Die unterste Flüssigkeits- oder Gasschicht haftet an Platte 1, die oberste an Platte 2. v nimmt von Platt1 nach Platte 2 zu.

Kraft, um Platte 2 mit v zu bewegen:

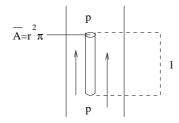
 $F = \eta A \frac{dv}{dx}$ Newtonsches Reibungsgesetz

 η : Viskosität ("Zähigkeit") $[\eta] = 1 \frac{Ns}{m^2}$

A: Fläche der Platte

1.12.4 Laminare Strömung durch Rohre; das Gesetz von Hagen-Poiseuille

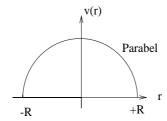
In einem starken Rohr mit dem Radius R betrachten wir ein Strohmröhrchen mit dem Radius r.



$$F = r^2 \pi (p_1 - p_2)$$
 "Antriebskraft"

$$\begin{split} F &= \eta \, A \, \frac{dv}{dr} = \eta \, 2\pi r \, l \, \frac{dv}{dr} & \text{Reibungskraft} \\ &\Rightarrow r^2 \pi \, (p_1 - p_2) = \eta \, 2\pi r \, l \, \frac{dv}{dr} \\ &\frac{p_1 - p_2}{2\eta l} \int\limits_0^{\Omega} r \, dr = \int\limits_v^0 dv \\ &\Rightarrow v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2) & \text{Geschwindigkeit} \end{split}$$

Parabolisches Geschwindigkeitsprofil im Rohr:



Die Massenstromstärke (M) bestimmen wir durch einen Zylinderring mit Radius r und der Dicke dr. Dann führen wir eine Integration über die Zylinderringe aus.

$$\begin{split} \dot{M} &= \frac{dm}{dt} = \varrho \frac{\dot{V}}{dt} = \varrho \int\limits_{0}^{R} \underbrace{2\pi r dr}_{A} \frac{dx}{dt} \\ &= \varrho \int\limits_{0}^{R} 2\pi r dr v(r) \\ &= \varrho \frac{p_{1} - p_{2}}{4\eta l} 2\pi \int\limits_{0}^{R} r(R^{2} - r^{2}) dr \\ &= \frac{\varrho \pi}{2\eta l} (p_{1} - p_{2}) \int\limits_{0}^{R} (rR^{2} - r^{3}) dr \\ \dot{M} &= \frac{\varrho \pi}{8\eta l} (p_{1} - p_{2}) R^{4} \qquad \text{Gesetz von Hagen-Poiseuille} \\ \dot{M} \sim R^{4} \end{split}$$

1.12.5 Stokesche Reibung einer Kugel

Eine Kugel in Öl hat eine konstante Sinkgeschwindigkeit. Daraus kann man eine Abschätzung der Reibungskraft F_R gewinnen.

$$F_R = \eta \, A \, \frac{dv}{dx}$$
 $F_R \approx \eta \, \underbrace{4r^2\pi}_{Kugeloberflaeche} \frac{v}{r} = 4\pi\eta \, r \, v$
genaue Untersuchungen zeigen:
 $F_R = 6 \, \pi \, \eta \, r \, v \,$ Stokesches Gesetz für Kugel
GLEICHGEWICHT: d.h. $v = const$ für
 $m \, g - |F_A| = 6\pi \, \eta \, r \, v \,$ (Bestimmung von η)

1.12.6 Turbulente Strömung und Reynolds-Zahl

LAMINARE STRÖMUNG: Stromlinien

TURBULENTE STRÖMUNG: Wirbelbildung Falls die Reynoldszahl einen bestimmten Grenzwert überschreitet (z.B. 2300 bei Rohrströmung), findet ein Umschlag von laminar in turbulent statt.

$$Re = \frac{\rho L v}{\eta}$$
 $[Re] = 1$ ("dimensionslose Zahl")

 $v\colon$ ab dieser Geschwindigkeit findet der Umschlag statt

L: charakt. Länge eines Systems

1.12.7 Luftwiderstand und c_w -Wert

Wir betrachten ein Fahrzeug mit der Querschnittsfläche A und nehmen an, daß das gesamte vom Fahrzeug verdrängte Luftvolumen auf Fahrzeuggeschwindigkeit v beschleunigt wird.

$$dW = F ds = F v dt$$

$$dW = dE_{kin, Luft} = \frac{dm}{2}v^2 = \frac{v^2}{2} \varrho \underbrace{A ds}_{Volumen \ der \ Luft}$$

$$\Rightarrow F v dt = \frac{v^2}{2} \rho A v dt$$
$$F = \frac{\rho}{2} v^2 A$$

Je nach Formgebung ist F größer oder kleiner:

$$F = c_w \frac{\varrho}{2} v^2 A$$
 c_w : sog. c_w -Wert

Leistung:
$$P = F v = c_w \frac{\varrho}{2} v^3 A$$

Dies bedeutet:

doppelte Endgeschwindigkeit \Rightarrow 4-facher Energieverbrauch \Rightarrow 8-fache Motorleistung.

Kapitel 2

Schwingungen

Ein physikalischer Vorgang, bei dem sich eine Meßgröße periodisch ändert, heißt Schwingung . In Physik und Technik sind Schwingungen von enormer Bedeutung, da sich viele Vorgänge durch sie beschreiben lassen. An eine Gleichgewichtslage gebundene Teilchen befinden sich in einem Potentialminimum. Daher kann das Potential in ihrer Umgebung als Parabel angenähert werden, wodurch sich $V(x) \approx \frac{1}{2}kx^2$ ergibt. Das führt zu einer elastischen Kraft $F(x) = \frac{dV}{dx} = -kx$. Ein Teilchen, daß einer derartigen Kraft ausgesetzt ist, schwingt harmonisch und sinusförmig. Jedoch führt ein Teilchen meist nicht nur eine Schwingung aus, sondern mehrere. Diese können sich hinsichtlich Amplitude, Frequenz, Richtung und Phase unterscheiden.

2.1 Freie und erzwungene Schwingungen

2.1.1 Schwingungsarten

Harmonische Schwingungen Sinusförmig und zeitabhängig

freie Schwingung (ohne äußeren Erreger) ungedämpfte Schwingung

Inharmonische Schwingung erzwungene Schwingung (mit periodischem äuße-

rem Erreger

gedämpfte Schwingung, das heißt: Energie wird abgeführt (zum Beispiel durch Reibung)

2.1.2 Die Bewegungsgleichung

In Vektorschreibweise

$$m\vec{a} = \sum \vec{F}_i$$

In einer Dimension

$$ma = \sum F_i$$

Als Beispiel die Bewegungsgleichung der Hook'schen Feder (ohne Gravitation)

$$m\ddot{x} + Dx = 0$$

Diese Schreibweise von F = ma beschreibt das physikalische Verhalten der Feder vollständig. Es handelt sich hierbei um eine Differentialgleichung.

2.1.3 Differentialgleichungen

Gleichungen, die neben einer Funktion auch deren Ableitung enthalten, heißen Differentialgleichungen.

$$v = at \Leftrightarrow \dot{s} = \ddot{s}t$$

Hat man eine Differentialgleichung, zum Beispiel die Bewegungsgleichung, so sucht man die Menge aller Funktionen, die diese Differentialgleichung lösen: Die "allgemeine Lösung" der Differentialgleichung. Jede Funktion, die man in die Differentialgleichung einsetzen kann und die diese erfüllt, heißt eine "spezielle Lösung" der Differentialgleichung. Daß eine Funktion tatsächlich Lösung einer bestimmten Differentialgleichung ist, zeigt man durch Einsetzen¹ dieser Funktion in die Differentialgleichung. Sucht man die Lösung einer Differentialgleichung, macht man einen Ansatz, das heißt, man denkt sich eine Funktion aus, von der man vermutet, daß sie die Differentialgleichung lößt. Wenn dies nicht der Fall ist, muß man weiter probieren.

¹Einen eleganteren Beweis gibt es nicht.

2.1.4 Der harmonische Oszillator

Die Hook'sche Feder (ohne Gravitation)

- a) Bewegungsgleichung $m\ddot{x} + Dx = 0$
- b) Ansatz $x(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t \Rightarrow \ddot{x}(t) \dots$

eingesetzt in A) liefert:

c) Kreisfrequenz $\omega_0 = \sqrt{\frac{D}{m}}$

das heißt, für C) erfüllt der Ansatz die Differentialgleichung, egal wie c_1 , c_2 gewählt sind! Daher stellt B) die allgemeine Lösung der Differentialgleichung A) dar. Jedes Wertepaar (c_1, c_2) liefert eine spezielle Lösung von A). Wie erhalte ich nun aus der allgemeinen Lösung eine für mein System gültige Lösung? Indem die Anfangsbedingungen eingesetzt werden:

$$x(t=0) = \dots$$

$$\dot{x}(t=0) = \dots$$

Die Anfangsbedingungen legen die Koeffizienten c_1 und c_2 eindeutig fest.

$$x(t=0) \equiv x_0 = c_1$$

$$\ddot{x}(t=0) \equiv v_0 = c_2 \omega_0$$

wir erhalten die spezielle Lösung:

$$x(t) = x_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t$$

Das ist die Gleichung des HARMONISCHEN OSZILLATORS.

2.1.5 Gegenüberstellung verschiedener harmonischer Schwingungen

Bei diesen freien, ungedämpften Schwingungsarten wird periodisch die Energie zwischen kinetischem und potentiellem Zustand umgewandelt, das heißt, es gilt:

$$E_{kin} + E_{pot} = E_{ges} = const$$

Für Linearbewegungen, wie bei Schwingung A) und C), gilt:

ma + [Betrag der Rückstellkraft] = 0

Bei Drehbewegungen, Fall B) und D), gilt entsprechend:

 $\vartheta \varphi + [Betrag des rückstellenden Drehmoments] = 0$

a) Hooksche Feder

$$m\ddot{x} + Dx = 0 \Longrightarrow \omega_0 = \sqrt{\frac{D}{m}} = \frac{2\pi}{T} = 2\pi\nu$$

b) Drehschwingung

$$\vartheta \ddot{\varphi} + D_{\varphi} \varphi = 0 \Longrightarrow \omega_0 = \sqrt{\frac{Dx}{\vartheta}}$$

c) mathemathisches Pendel (Näherung für kleine Auslenkungen)

$$ml\ddot{\varphi} + mg\varphi = 0 \Longrightarrow \omega_0 = \sqrt{\frac{g}{l}}$$

d) physikalisches Pendel (Näherung für kleine Auslenkungen)

$$\vartheta \ddot{\varphi} + mgS\varphi = 0 \Longrightarrow \omega_0 = \sqrt{\frac{mgS}{\vartheta}}$$

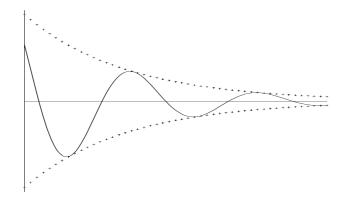
S stellt den Abstand zwischen Schwerpunkt und Drehpunkt dar.

2.1.6 Der freie, gedämpfte Oszillator

Häufig ist die Reibungskraft F_R proportional zur Geschwindigkeit, wie zum Beispiel bei der Stokes-Formel: $F_R = -6\pi \eta v r$. Daher führen wir $F_R = -\beta \dot{x} - Dx$ in die Bewegungsgleichung ein: $ma = -\beta v - Dx$ mit $\beta = 6\pi \eta r$.

$$m\ddot{x} + \beta \dot{x} + Dx = 0$$

Wobei βx die Reibung und $m\ddot{x} + Dx$ die Hook'sche Feder darstellt.



Als Abkürzung benutzt man

$$\omega_0 := \sqrt{\frac{D}{m}}$$

$$\delta := \frac{\beta}{2m}$$

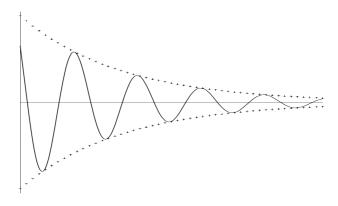
 $\implies \ddot{y} + 2\delta \dot{y} + \omega_0^2 y = 0$ Die Lösung dieser Differentialgleichung führt zu

$$y = y_0 e^{-\delta t} \sin\left(\sqrt{\omega_0^2 - \delta^2 t} + \varphi_0\right)$$

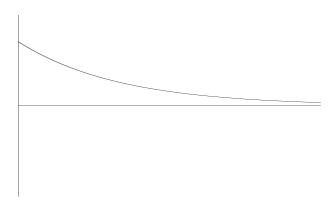
wobei hierbei mit der e- Funktion die exponentiell mit der Zeit t abklingende Amplitude und mit der sin - Funktion die Schwingung mit der Kreisfrequenz $\omega = \sqrt{\omega_0^2 - \delta^2}$ dargestellt wird. Aus den Anfangsbedingungen ergibt sich y_0 für die Amplitude und φ_0 für die Phase bei t=0.

Wir unterscheiden drei Fälle der gedämpften Schwingung:

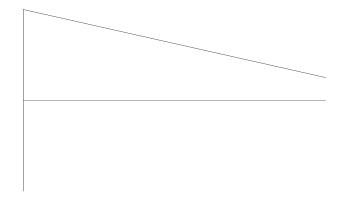
a) Schwingfall $\omega > 0$



b) aperiodischer Grenzfall $\omega = 0$



c) Kriechfall ω ist imaginär, da $\omega_0^2 - \delta^2 < 0$



Die Gleichgewichtslage wird bei Fall $\mathtt{B})$ am schnellsten erreicht. Dies ist bei Zeigermeßinstrumenten von Bedeutung.

2.1.7 Erzwungene Schwingungen und Resonanz

Erzwungene Schwingungen werden durch eine periodische, anregende Kraft der Frequenz ω erzeugt.

$$L(t) = L_0 \sin(\omega t)$$

$$F_{ext}(t) = DL(t) = DL_0 \sin(\omega t)$$

Bewegungsgleichung:

$$m\ddot{x} + \beta \dot{x} + Dx = DL_0 \sin(\omega t)$$

Mit
$$\omega_0 = \sqrt{\frac{D}{m}}$$
; $\delta = \frac{\beta}{2m}$ folgt:

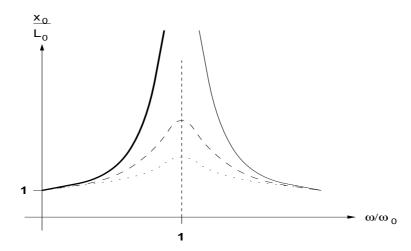
$$\ddot{x} + 2\delta \dot{x} + \omega_0^2 (x - L_0 \sin(\omega t)) = 0$$

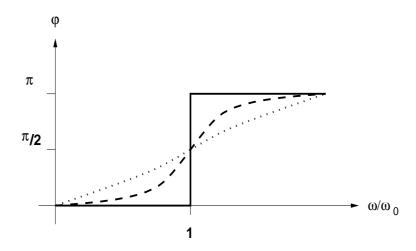
Der Ansatz zur Lösung dieser Differentialgleichung lautet $x = x_0 \sin(\omega t - \varphi)$. Eingesetzt in die Differentialgleichung ergibt sich folgende Lösung (Rechengang ist etwas langwierig, deshalb wird hier darauf verzichtet.) :

$$\frac{x_0}{L_0} = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 - (2\delta\omega)^2}}$$

- x_0 Amplitude der Schwingung
- L_0 Amplitude des Erregers
- ω_0 Eigenfrequenz der Schwingung
- ω Frequenz des Erregers
- δ Dämpfung
- φ Phasenwinkel

 $\tan\varphi=2\delta\frac{\omega}{\omega_0^2-\omega^2}$ wirkliche Amplitude





Wir unterscheiden drei Fälle der Erregung:

a) Erregerfrequenz ist Null $\omega = 0$

 $x_0 = L_0 \ \varphi = 0$ Die Schwingung hat die gleiche Amplitude und Phase, wie der Erreger.

b) Erreger- und Eigenfrequenz sind gleich $\omega = \omega_0$

$$x_0 = L_0 \frac{\omega_0^2}{2\delta\omega} \varphi = \frac{\pi}{2}$$

c) Erregerfrequenz ist bedeutend höher $\omega \to \infty$

 $x_0 \to 0 \ \varphi \to \pi$ Die Amplitude geht gegen 0 und ist gegenphasig zum Erreger. Das Phänomen, daß die Amplitude der Schwingung nahe ω_0 sehr groß wird, heißt RESONANZ

 $\frac{x_0}{L_0}$ ist die Resonanzüberhöhung $\omega_{max} = \sqrt{\omega_0^2 - 2\delta^2}$ ist die Resonanzfrequenz, die mit größerer Dämpfung abnimmt.

2.1.8 Einschwingvorgänge

Da für das Lösen von linearen Differentialgleichungen gilt, daß die allgemeine Lösung der inhomogenen Differentialgleichung gleich die allgemeine Lösung der zugehörigen homogenen Differentialgleichung addiert mit einer Lösung der inhomogenen Differentialgleichung ist, können wir für Einschwingvorgänge die folgende Formel aufstellen:

$$x(t) = e^{-\delta t} \left(c_1 \cos \left(\omega_{frei} t \right) + c_2 \sin \left(\omega_{frei} t \right) \right) + A \cos \left(\omega_{err} t - \varphi \right)$$

mit der Kreisfrequenz ω_{frei} des freien Oszillators und der Erregerfrequenz ω_{err} .

2.2 Überlagerung von Schwingungen

2.2.1 Überlagerung paralleler Schwingungen

Diese Schwingungsarten treffen wir in der Musik an, zum Beispiel bei Klavier und Geige.

Überlagerung zweier homogener Teilschwingungen

$$x(t) = A_1 \cos(\omega_1 t - \varphi_1) + A_2 \cos(\omega_2 t - \varphi_2)$$

Wähle Zeitpunkt t_1 so, daß $\varphi_1=0$ gilt, dann lautet die Bewegungsgleichung $x(t)=A_1\cos(\omega_1 t)+A_2\cos(\omega_2 t-\varphi)$, wobei A Die Amplitude und ω die Kreisfrequenz darstellt. Wir können nun für diese Gleichung verschiedene Fälle unterscheiden.

a) Gleiche Frequenzen $\omega_1 = \omega_2 = \omega$

$$x(t) = A_1 \cos(\omega t) + A_2 \cos(\omega t - \varphi)$$

Laut Formelsammlung (Sinus-Cosinussätze) ist dies jedoch gerade $x(t) = A\cos\left(\omega t - \varphi_{ges}\right)$ mit $A = \sqrt{A_1^2 + 2A_1A_2\cos\left(\varphi\right) + A_2^2}$ und $\tan\left(\varphi_{ges}\right) = \frac{A_2\sin(\varphi)}{A_1 + A_2\cos(\varphi)}$. Also können wir sagen: Die Überlagerung von zwei oder mehreren harmonischen Schwingungen gleicher Frequenz ergibt gerade wieder eine harmonische Schwingung dieser Frequenz.

b) Unterschiedliche Frequenzen $\omega_1 \neq \omega_2$

Als Resultat bekommen wir in diesem Fall durch Überlagerung eine unharmonische Schwingung. Falls $\frac{m}{n}$ rational ist, das heißt, es gilt $m\omega_1=n\omega_2$ mit $m,n\in N$, dann erhalten wir als Periodendauer T $m\omega_1=n\omega_2 \iff nT_1=mT_2=T$.

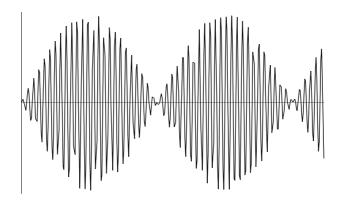
c) Fast gleiche Frequenzen $\omega_1 \approx \omega_2$

Laut Formelsammlung gilt: $\cos x + \cos y = 2\cos\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$. Folglich gilt für uns:

$$A\cos(\omega_1 t) + A\cos(\omega_2 t) = 2A\cos(\frac{\omega_2 - \omega_1}{2}t)\cos(\frac{\omega_2 + \omega_1}{2}t)$$
.

Für $\omega_1 \cong \omega_2$ mit $\Delta \omega = \omega_2 - \omega_1$ ergibt sich dann

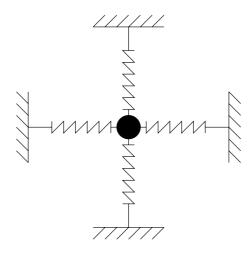
$$A\cos(\omega_1 t) + A\cos(\omega_2 t) = 2A\cos(\frac{\Delta\omega}{2}t)\cos(\omega t)$$



Die zeitliche Variation der Amplitude wird durch $A(t) = \left| 2A\cos\left(\frac{\Delta\omega t}{2}\right) \right|$ ausgedrückt. Die Periode T der Schwebung entspricht dem zeitlichen Abstand benachbarter Minima des obigen Cosinus. $\Longrightarrow \frac{\Delta\omega T}{2} = \pi$. Eine Schwebung ist daher eine Amplitudenmodulation mit der Differenzfrequenz $\Delta\omega$. Wenn beide Amplituden den selben Wert haben, ist dies eine REINE Schwebung mit vollständiger Auslöschung im Minimum. Sind die Amplituden jedoch verschieden, dann erhalten wir eine UNREINE Schwebung mit $A = |A_2 - A_1| > 0$ im Minimum.

2.2.2 Überlagerung orthogonaler Schwingungen

Der besseren Übersichtlichkeit wegen betrachten wir den Fall zweier harmonischer Schwingungen ohne Reibung (Dämpfung), die zueinander senkrecht stehen.



Wir unterscheiden fünf Fälle, die bei dieser Kombination auftreten können.

 w_1 Schwingungsfrequenz des ersten Schwingers

 w_2 Schwingungsfrequenz des zweiten Schwingers

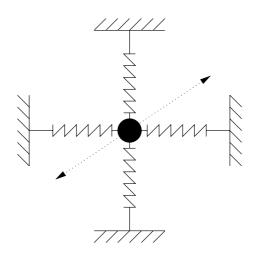
 φ Phasenverschiebung

a)
$$\omega_1 = \omega_2 = \omega$$
 und $\varphi = 0$

Mit $x = A\cos(\omega t)$ und $y = B\cos(\omega t)$ ergibt sich $\frac{x}{A} = \frac{y}{B}$

Es gilt daher: $y(x) = \frac{B}{A}x$, also eine Gerade in unserem Bild.

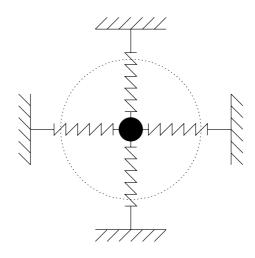
Allgemein gilt: $\varphi = n\pi$ mit $n \in \mathbb{Z}$; $\Longrightarrow y(x)$ =Gerade.



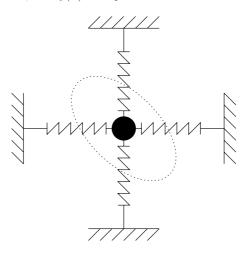
b)
$$\omega_1 = \omega_2 = \omega$$
 , $\varphi = \frac{\pi}{2}$ und $A = B$

Durch den Phasenunterschied und A = B ergibt sich eine Kreisbahn.

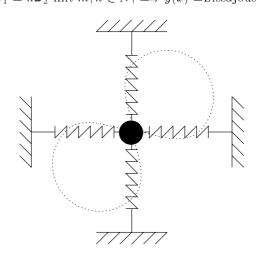
Allgemein gilt: $\varphi = (2n-1)\frac{\pi}{2}$ mit A = B und $n \in \mathbb{Z}$; $\Longrightarrow y(x) = \text{Kreisbahn}$.



c) $\omega_1=\omega_2=\omega$ und A,B,φ nicht speziell Allgemein gilt: $\omega_1=\omega_2$; $\Longrightarrow y(x)$ =Eliptische Bahn.



d) $\frac{\omega_1}{\omega_2}$ ist rational $\iff m\omega_1 = n\omega_2$ mit $m,n \in N$ Nach der Zeit $mT_2 = nT_1$ ist der Anfangszustand in x und y wieder erreicht. Wir erhalten eine geschlossene Bahn, eine sogenannte Lissajous Figur. Allgemein gilt: $m\omega_1 = n\omega_2$ mit $m,n \in N$; $\implies y(x) =$ Lissajous Figur.



e) $\frac{\omega_1}{\omega_2}$ nicht rational

Es ergeben sich keine geschlossenen Bahnen.

2.2.3 Fourier-Synthese und Fourier-Analyse

Fourier-Synthese

Beliebige periodische Funktionen mit der Periode $T = \frac{2\pi}{\omega}$ sind als Summen von Sinusfunktionen mit ganzzahligen Vielfachen der Grundfrequenz ω darstellbar:

$$y(t) = y_0 + \sum y_n \sin(n\omega t + \varphi_n)$$

Fourier-Analyse

Umgekehrt kann man natürlich auch jede beliebige periodische Funktion in Sinusfunktionen zerlegen. Die Umformung obiger Funktion nach der Formelsammlung ergibt:

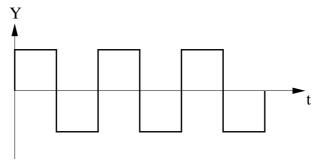
$$y(t) = y_0 + \sum a_n \cos(n\omega t) + \sum b_n \sin(n\omega t)$$

wobei gilt:
$$y_n^2=a_n^2+b_n^2$$
 mit den Fourierkoeffizienten $a_n=\frac{2}{T}\int_0^Ty(t)\cos(n\omega t)dt$ und $b_n=\frac{2}{T}\int_0^Ty(t)\sin(n\omega t)dt$

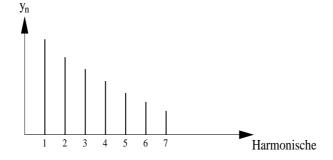
 1ω ist die Grundschwingung.

 2ω die erste Oberschwingung, also die zweite Harmonische. ... $n\omega$ die (n-1)-te Oberschwingung, also die n-te Harmonische.

Als Beispiel hier nun eine Rechteckfunktion

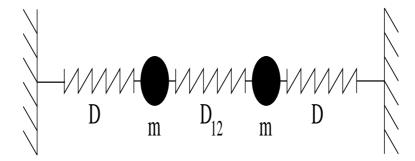


und das dazugehörige Fourierspektrum



2.2.4Gekoppelte Schwingungen

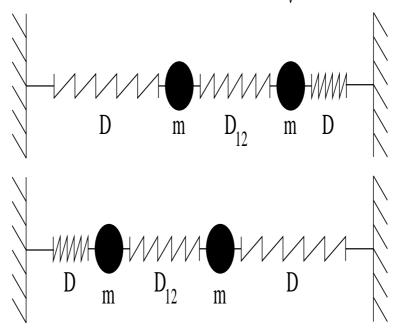
Die gekoppelte Federschwingung



Hierbei sind zwei harmonische Oszillatoren mit der Frequenz $\omega = \sqrt{\frac{D}{m}}$ durch eine Feder mit der Federkonstanten D_{12} gekoppelt. Durch diese Kopplung wird der Austausch von Energie zwischen beiden Oszillatoren ermöglicht. Wir unterscheiden zwei Fundamentalschwingungen, bei denen kein Energieaustausch stattfindet.

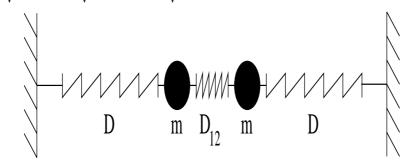
a) gleichphasige Schwingung

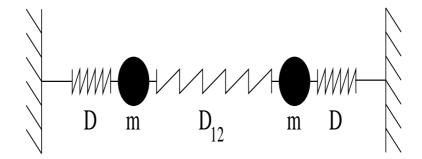
Die Kopplungsfeder ist immer entspannt. Es gilt: $\omega_1 = \sqrt{\frac{D}{m}} = \omega_0$



b) gegenphasige Schwingung

Der Mittelpunkt der Kopplungsfeder bleibt fest. Jede Seite hat eine Hälfte der Kopplungsfeder, also die halbe Länge, daher die zweifache Federkonstante. $\omega_2 = \sqrt{\frac{D+2D_{12}}{m}} = \sqrt{\frac{D}{m}+2\frac{D_{12}}{m}} = \sqrt{\omega_0^2+2\frac{D_{12}}{m}}$





Jede beliebige Schwingung des Systems läßt sich als Überlagerung der beiden Fundamentalschwingungen darstellen.

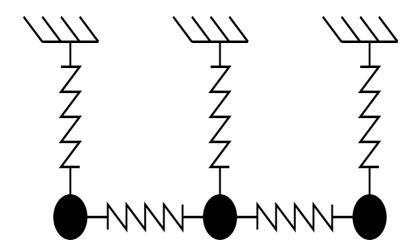
${\bf Spezial fall\ Schwache\ Kopplung:}$

Wenn D_{12} wesentlich kleiner als D ist, gilt $\omega_1 \simeq \omega_2$. Daher führt eine Überlagerung von ω_1 und ω_2 zu einer Schwebung mit der Frequenz $\omega = \omega_2 - \omega_1$. Die Energie im System schwingt dann mit der Schwebungsfrequenz periodisch zwischen dem Oszillator 1 und dem Oszillator2.

Kapitel 3

Wellen

3.1 Von Schwingungen zu Wellen



Jeder Oszillator ist an seinen Nachbarn gekoppelt. Dadurch wird ein räumlicher Transport von Schwingungsenergie erzielt. Jeder Oszillator "hinkt" seinem vorherigen Nachbarn in der Phase hinterher.

$$y(t,x) = y_0 \sin(\omega t - kx)$$

Wir sehen, daß diese Gleichung von ZEIT und ORT abhängt.

Schwingung: y = y(t)

Welle: y = y(t, x)

Eine Welle beschreibt den räumlichen Transport von Schwingungsenergie ohne Transport von Materie.

Um den Betrag der Wellenlänge λ zu erhalten, muß man einige Überlegungen bezüglich der Phase der einzelnen Wellenpunkte anstellen. Für benachbarte Orte mit gleicher Phase (also nicht die unmittelbaren Nachbarn) gilt $k\Delta x=2\pi$, also $\Delta x=\frac{2\pi}{k}$. Der Abstand dieser benachbarten Orte beträgt also gerade $\lambda=\frac{2\pi}{k}$ und wird Wellenlänge λ genannt. $k=\frac{2\pi}{\lambda}$ heißt Wellenzahl.

Die Geschwindigkeit, mit der sich ein Ort bestimmter Phase bewegt (zum Beispiel der Ort mit dem Amplitudenmaximum), heißt Phasengeschwindigkeit c. In der Zeit $T=\frac{2\pi}{\omega}$ hat sich der "bestimmte Ort" um die Wellenlänge λ bewegt. Daraus erhalten wir die Geschwindigkeit $c=\frac{\lambda}{T}=\frac{2\pi}{\frac{2\pi}{2\pi}}=\frac{\omega}{k}$

3.2 Die Wellengleichung

Die Gleichung

$$u(x,t) = u_0 \sin(\omega t - kx)$$

beschreibt eine Welle. u(x,t) ist die Lösung der folgenden Differentialgleichung:

$$\frac{d^2u}{dx^2} - \frac{1}{c^2} \frac{d^2u}{dt^2} = 0$$

In vektorieller Schreibweise lauten die Formeln dann (mit \overrightarrow{k} parallel zur Ausbreitungsrichtung der Welle):

$$u(\vec{r},t) = u_0 \sin(\omega t - \vec{k} \vec{r})$$

$$\frac{d^2u}{dx^2} + \frac{d^2u}{dy^2} + \frac{d^2u}{dz^2} - \frac{1}{c^2}\frac{d^2u}{dt^2} = 0$$

3.3 Wellenarten

3.3.1 Longitudinale Wellen

Bei diesen Wellen verläuft die Bewegungsrichtung des Oszillators parallel zur Ausbreitungsgeschwindigkeit der Welle.

3.3.2 Transversale Wellen

Die Bewegungsrichtung des Oszillators steht hierbei senkrecht zur Ausbreitungsgeschwindigkeit der Welle.

3.3.3 Ebene- und Kugelwellen

Als Wellenfront wird die Menge aller Punkte gleicher Phase bezeichnet. Bei ebenen Wellen bilden diese Punkte eine Ebene, wobei die Wellenfront bei Kugelwellen eine Kugel oder Halbkugel darstellt. Im zweidimensionalen spricht man jedoch von Kreiswellen. Als klassisches Beispiel werden hier die Wellen auf der Oberfläche von einem Wassergefäß, in das ein Stein fiel, genannt.

3.3.4 Beugung und Huygenssches Prinzip

Auf die Frage "Wie gelangt eine Schallwelle um die Ecke?" gibt uns das Huggensche Prinzip Antwort:

Jeder Punkt einer Wellenfront kann als Ausgangspunkt einer Kugelwelle betrachtet werden; als sogennante Huygenssche Elementarwelle.

Die Summe über diese Kugelwellen ergibt die neue Wellenfront. Eine Welle, die nun auf ein Hindernis trifft, wird daran "gebeugt", das heißt, aufgrund des Huygensschen Prinzips kommt es zu einer Abweichung von der ursprünglichen Ausbreitungsrichtung.

3.3.5 Stehende Wellen

Diese Wellen "leben" nur in einem genau abgegrenzten Bereich. An den Enden (gegeben durch die Ausbreitungsrichtung) von diesem Bereich treten Reflexionen auf. Dadurch entsteht eine Überlagerung von der einlaufenden und der reflektierten Welle. Bei bestimmten Frequenzen (bestimmt in Bezug auf die Größe des "Lebensbereiches") bilden sich stationäre Schwingungsmuster aus, die stehende Wellen genannt werden.

Reflexionen können an zwei verschiedenartigen Enden auftreten:

a) geschlossenes Ende, Schwingungsknoten

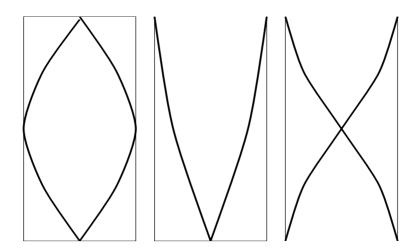
Bei Saitenmusikinstrumenten ist dies der Fall; das Saitenende ist eingespannt.

Eine stehende Welle entsteht, falls $l=n\frac{\lambda}{2}$ mit $n\in N$ gilt. Durch $c=\lambda f$ erhalten wir die Resonanzfrequenz $f=\frac{nc}{2l}$. l ist hierbei die Länge des "Lebensbereiches", bei einem Musikinstrument die Länge der Saite.

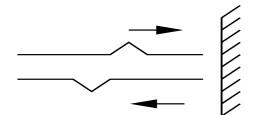
Für $l=\frac{\lambda}{2}$ erhalten wir die Grundschwingung der Saite; $l=2\frac{\lambda}{2}$ die erste Oberschwingung,...

b) offenes Ende, Schwingungsbauch

Hier erhalten wir die Grundschwingung schon bei $l=\frac{\lambda}{4}$. Folglich gilt für die Resonanz- oder Eigenfrequenz $f=\frac{nc}{4l}$.



Bei Reflexionen am geschlossenen Ende tritt ein Phasensprung mit dem Betrag π auf.



3.4 Beispiel einer mechanischen Welle

Wir betrachten eine Schallwelle in einem Stab genauer. Durch das Anschlagen mit einem Hammer erreichen wir eine elastische Deformation. Dadurch breitet sich eine Längswelle aus. Die Bedeutung der Variablen:

A Stabquerschnitt

dx Längenelementchen

 $\sigma(x)$ Druck (Zugspannung)

 ρ Dichte

E Elastizitätsmodul

u(x) Auslenkung aus der Ruhelage

Na, dann rechnen wir ein bissele:

$$F(x) = \sigma(x)A$$

$$F(x + dx) = \sigma(x)A + \frac{\Delta\sigma}{\Delta x}dxA$$

wobei: $\sigma = \varepsilon E = E \frac{du}{dx} \Longrightarrow \frac{d\sigma}{dx} = E \frac{du}{dx^2}$

$$dF = EA \frac{d^2u}{dx^2} dx$$

$$dm = \rho N = \rho A dx$$

$$dF = dma = dm \frac{d^2u}{dt^2}$$

$$EA\frac{du}{dx^2}dx = \rho Adx \frac{d^2u}{dt^2}$$

Durch Vergleich mit der Wellengleichung erhalten wir die Schallgeschwindigkeit im Stab

$$c = \sqrt{\frac{E}{\rho}}$$

3.5 Energietransport durch die Welle

Wir betrachten ein Massenelement mit der Masse dm und dem Volumen dV . ρ Dichte

 u_0 Amplitude

 $\omega = 2\pi f$

Für die kinetische Energie gilt:

$$dE_{kin} = \frac{dm}{2}u_0^2\omega^2\cos^2(\omega t - kx)$$

Für die $\cos^2 \mathrm{Funktion}$ erhalten wir den Zeitmittelwert $\cos^2 \left(\omega t - kx\right) = \frac{1}{2}$.

$$\overline{dE_{kin}} = \frac{dm}{4}u_0^2\omega^2 = \frac{\rho dV}{4}u_0^2\omega^2 = \overline{dE_{pot}}$$

Die Gesamtenergie beträgt

$$dE = \overline{dE_{kin}} + \overline{dE_{pot}} = \frac{\rho}{2} u_0^2 \omega^2 dV$$

Gesamtenergiedichte (Energie pro Volumen):

$$W = \frac{dE}{dV} = \frac{\rho}{2} u_0^2 \omega^2$$

Der Energietransport in der Zeit Δt durch die Querschnittsfläche A senkrecht der Ausbreitungsrichtung der Welle beträgt demnach:

$$E = W\Delta V = WA\Delta x = WAc\Delta t$$

Die Intensität ist der Energietransport pro Zeit und Durchschnittsfläche, die Energiestromdichte.

$$I = \frac{E(A, \Delta t)}{A\Delta t} = Wc = \frac{\sigma}{2}u_0^2\omega^2c$$

3.6 Der Dopplereffekt

Bewegt sich eine Schwingungsquelle relativ zu einem Empfänger verurscht dies eine Frequenzänderung. Wenn ein Auto an einem Fußgänger hupend vorbeifährt, hört dieser die Hupe in drei unterschiedlichen Tonhöhen. Die gesendete Frequenz wir mit f_0 , die empfangene Frequenz mit f' bezeichnet.

a) bewegte Quelle

Mit der Geschwindigkeit v>0 für die Annäherung ändert sich λ durch die Bewegung des Senders.

$$\lambda' = \lambda_0 - vT_0$$

Dabei ist vT_0 die Strecke, um die sich die Quelle in der Periode T bewegt hat.

$$\lambda' = cT_1 - vT_0 = (c - v)T_0 = \frac{c - v}{f_0}$$

Damit erhalten wir für die empfangene Frequenz:

$$f' = \frac{c}{\lambda'} = \frac{cf_0}{c - v} = \frac{f_0}{1 - \frac{v}{c}}$$

b) bewegter Beobachter

Auch hier gilt die Geschwindigkeit v > 0 für die Annäherung

$$f' = \frac{1}{T} = \frac{c+v}{\lambda_0} = \frac{f_0}{c}(c+v) = f_0(1+\frac{v}{c})$$

3.7 Kohärenz und Interferenz

Die Amplituden harmonischer Wellen addieren sich zur Gesamtamplitude; sogenanntes Superpositionsprinzip. Besteht zwischen zwei Wellen an jedem Ort in einem bestimmten Raumbereich eine feste, das heißt eine zeitunabhängige, Phasenbeziehung, so heißen die beiden Wellen KOHÄRENT. Vorraussetzung ist, daß beide Wellen die gleiche Frequenz haben. Überlagert man kohärente Wellen, kommt es zur Interferenz. Orte mit Phasenverschiebungkommen in zwei Fällen vor:

a) Wellen gleichphasig

Die Amplituden beider Wellen addieren sich. Es entsteht konstruktive Interferenz mit maximaler Intensität.

b) Wellen gegenphasig

Die Amplituden subtrahieren sich. Es bilden sich Orte mit minimaler Intensität, bis zur Auslöschung; das ist die destruktive Interferenz.

3.8 Dispersion

Wir betrachten ein Wellenpaket, das sich mit konstanter Geschwindigkeit in eine Richtung ausbreitet. Es besteht aus einer Mischung von Sinuswellen unterschiedlicher Frequenzen. Ist die Phasengeschwindigkeit c frequenzabhängig, so "entwirren" sich die verschiedenen Frequenzen im Laufe der Zeit; das ist Dispersion. Das Wellenpaket verbreitert sich dadurch. Die Geschwindigkeit, mit der sich das Maximum des Wellenpaketes ausbreitet, heiß Gruppengeschwindigkeit.

Kapitel 4

Thermodynamik

4.1 Wärmeenergie und Temperatur

4.1.1 Temperatur und der Nullte Hauptsatz

Wir haben bisher potentielle Energie und kinetische Energie (mechanische Energien) kennengelernt. Neu ist die Wärmeenergie. Durch Reibung werden mechanische Energieformen in Wärmeenergie umgewandelt

⇒ Erhöhung der TEMPERATUR T.

Zwei Körper in thermischem Kontakt tauschen so lange Wärmeenergie aus, bis ihre Temperaturen gleich sind.

 \Rightarrow **Nullter Hauptsatz:** Zwei Körper im thermischen Gleichgewicht haben die selbe Temperatur.

4.1.2 Temperaturskala / absoluter Nullpunkt

die Celsius - Skala:

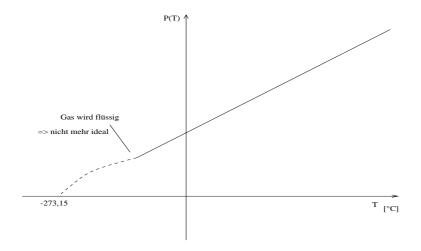
0 °C: Schmelzpunkt von Wasser

100°C: Siedepunkt von Wasser (bei 1 atm)

Nachteil: Nullpunkt willkürlich gewählt

das Verhalten idealer Gase

Alle ideale Gase zeigen bei V= const linearen Anstieg des DRUCKES mit der Temperatur.



Extrapolation für $p\to 0$ liefert für alle idealen Gase: $\textbf{-273,15}^{\circ}\textbf{C}$.

Definition der absoluten Temperatur T (Kelvin - Skala):

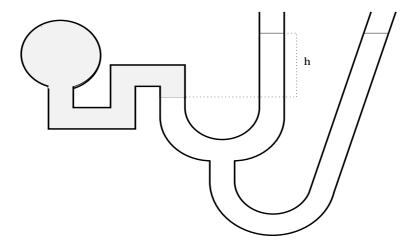
$$[T] = 1 \text{ K } (1 \text{ Kelvin})$$

Nullpunkt: 0 K = -273,15 °C

Temperatur
differenz: 1Kentspricht $1^{\rm o}{\rm C}$

Das Gasthermometer

Ideales Gas bei V = const.



$$\Delta p = \varrho \, h \, g$$

4.1.3 Wärmeausdehnung

Längenausdehnung

Als Funktion der Temperatur ändern Festkörper ihre Länge:

$$\frac{\Delta l}{l} = \alpha \cdot \Delta T$$

l: Länge

 Δ l: Längenänderung

 ΔT : Temperaturänderung

 α : Wärmeausdehnungskoeffizient

 $[\alpha] = \frac{1}{K} \ \alpha$ ist meistens > 0; bei Gummi und einigen Kunststoffen aber < 0

Volumenausdehnung

bei Festkörpern, Flüssigkeiten und Gasen:

$$\frac{\Delta V}{V} = \gamma \cdot \Delta T$$

 γ : Volumenausdehnungskoeffizient $[\gamma] = \frac{1}{K}$ γ ist meistens > 0 und bei Flüssigkeiten typischerweise ca. 50 × größer als bei Festkörpern.

Für Festkörper gilt: $\gamma = 3 \alpha$

4.1.4 Technische Verfahren zur Temperaturmessung

- Flüssigkeitsthermometer: nutzen die thermische Ausdehnung einer Flüssigkeit (Wasser, Alkohol, ...).
- Bimetallthermometer: Zwei miteinander fest verbundene Metallstreifen mit unterschiedlichem α verbiegen sich bei Temperaturänderung.
- Widerstandsthermometer:
 Änderung des elektrischen Widerstandes mit der Temperatur. Beispiel: Platin
 Film als Pt 100 Widerstand
- Thermoelemente
- Strahlungspyrometer:
 berührungslose Messung hoher Temperaturen durch Messung der emitierten
 Wärmestrahlung
 (Rot- / Weißglut) → Oberflächentemperatur der Sonne = 5700 °C.

4.1.5 Wärmeenergie und spezifische Wärme

Benötigte Wärmeenergie ΔQ , um Körper der Masse m um ΔT zu erwärmen:

$$\Delta \mathbf{Q} = \mathbf{c} \cdot \mathbf{m} \cdot \Delta \mathbf{T}$$
 wobei c die spezifische Wärme meint: [c]= 1 $\frac{J}{k g \cdot K}$ C= c·m: Wärmekapazität [C]= 1 $\frac{J}{K}$

4.1.6 Phasenumwandlungen und latente Wärme

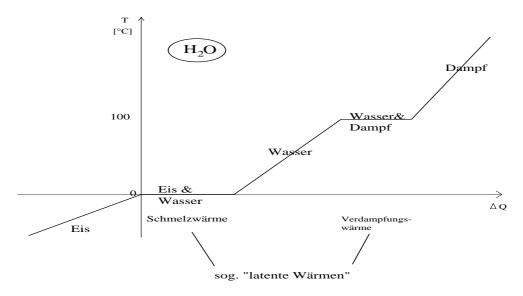
Umwandlung fest \leftrightarrow flüssig

Um einen Festkörper zu verdampfen, ist Zufuhr von thermischer Energie erforderlich (sog. Schmelzwärme):

$$\Delta Q_{Schmelz} = \text{m c}_{Schmelz} \ (\rightarrow \text{spezifische Schmelzwärme} \ [\frac{J}{kg}])$$

Umwandlung flüssig ⇔gasförmig Um eine Flüssigkeit zu verdampfen, ist Zufuhr von thermischer Energie erforderlich (sog Verdampfungswärme):

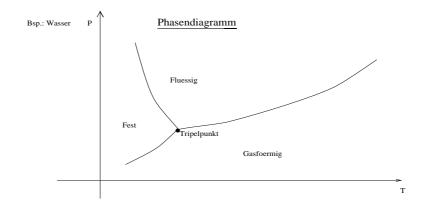
 $\Delta Q_{Verd} = \text{m c}_{Verd} \ (\rightarrow \text{spezifische Verdampfungswärme} \ [\frac{J}{kg}])$ Bei erneuter Kondensation wird ΔQ_{Verd} wieder frei (Kondensationswärme).



4.1.7 Phasendiagramme

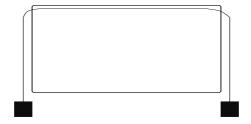
Temperatur der Phasenübergänge ist druckabhängig.

Bsp H_2O :



unter Druck wird Eis flüssig.

- Wandern von Gletschern
- Schlittschuhlaufen
- Draht wandert durch das Eis:



Temperatur der Phasenübergänge ist abhängig von gelösten Stoffen.

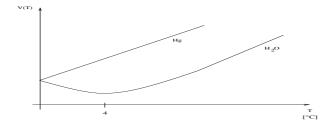
Bsp.: Gefrierpunktsreduzierung von $\rm H_2O$ durch Kochsalz bis -21°C je nach NaCl - Konzentration.

ohne Keime Verzug der Phasenübergänge

- unterkühlte Flüssigkeiten (reines Wasser bis -10°C)
- überhitzte Flüssigkeiten (Zur Vermeidung: Siedesteine als Keime)

Die Dichte - Anomalie des Wassers

- Wasser dehnt sich beim Gefrieren aus.
- maximale Dichte bei 4°C



4.1.8 Ideale und reale Gase

Die Stoffmenge und das Gesetz von Avogadro

Gase enthalten sehr viele Moleküle. Statt die Moleküle einzeln zu zählen, wählt man eine größere Einheit: das sog. "MoL".

Ein mol ist die Menge eines Stoffes, die 6,022045 ·10²³ Teilchen enthält.

Basisgröße [n]=1 mol

Avogadro - Konstante: $N_A = 6.022045 \cdot 10^{23}$ (Teilchen/ mol)

großes N: Anzahl der Teilchen

12 g des Kohlenstoffisotops $^{12}_{6}$ C enthalten 6,022045 $\cdot 10^{23}$ Atome.

Massenzahl= Zahl der Protonen und Neutronen zusammen.

Kernladungszahl= Zahl der Protonen im Kern

Die Molmasse m_{mol} ist die Masse von 6,022045 ·10²³ Teilchen (1 mol) eines Stoffes. Die Molmasse beträgt genausoviel Gramm wie die Massenzahl bzw. die rel.

Molekülmasse angibt. Das Molvolumen (V_{mol}) eines idealen Gases beträgt unter Normalbedingungen (1 atm, 273,15 K):

$$V_{mol} = 22,414 \cdot 10^{-3} m^3 = 22,414 \text{ l}$$

(Gesetz von Avogadro)

Die Zustandsgleichung für ideale Gase 4.1.9

Experimentell findet man bei idealen Gasen:

- für T = const gilt: $p \cdot V = const$
- \Rightarrow p $\sim \frac{1}{V}$ Gesetz von Boyle Mariotte
- p ·V \sim T
- $\Rightarrow \frac{p \cdot V}{T} = \mathrm{const.}$ Gesetz von Gay Lussac
- V \sim n Volumen \sim Stoffmenge

 \Rightarrow ideale Gasgleichung: p V = n R T

Berechnung von R nach dem Gesetz von Avogadro:

 ${\rm p=~1~atm=~1,013~\cdot10^5~\frac{\it N}{\it m^2};~~T=273,15~K;~~n=~1} {\rm mol};~~V_{mol}=22,4\cdot10^{-3}$ \Rightarrow universelle Gaskonstante: R = 8,314 $\frac{J}{mol\cdot K}$ (R ist für <u>alle</u> idealen Gase gleich)

Teilchenzahl N: $N = n N_A$

= n
$$\cdot \frac{6.022 \cdot 10^{23}}{mol}$$
 \Rightarrow n= $\frac{N}{N_A}$

 $= n \cdot \frac{6.022 \cdot 10^{23}}{mol} \Rightarrow n = \frac{N}{N_A}$ Für die ideale Gasgleichung ergibt sich: p V = n R T = N $\cdot \frac{R}{N_A} \cdot T$ = N k T

Boltzmann - Konstante: k =
$$\frac{R}{N_A}$$
 = 1,3807 ·10⁻²³

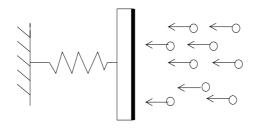
Mikroskopische Definition des idealen Gases 4.2

Drei Bedingungen:

- 1. Das Gas besteht aus einer großen Zahl von Teilchen, die untereinander und mit den Wänden nur elastische Stöße ausführen.
- 2. Großer Teilchenabstand, d.h. Gefäßvolumen » Eigenvolumen der darin enthaltenen Teilchen.
- 3. Zwischen den Stößen bewegen sich die Teilchen wechselwirkungsfrei.

kinetische Gastheorie 4.2.1

Die Grundidee



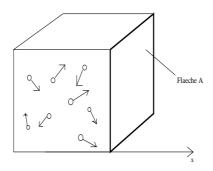
Stahlkugeln prasseln in dichter Folge auf die Stahlwand und werden an ihr reflektiert.

Mikroskopische Deutung des Gasdruckes und der Temperatur:

Moleküle des idealen Gases prasseln auf Gefäßwände

werden elastisch reflektiert übertragen Impuls $\Delta p = 2$ mv

 $\mathbf{F} = p \Leftrightarrow \mathbf{Kraft}$ auf Wand



 $\frac{N}{V}$: Anzahldichte, Zahl der Teilchen im Volumen elastischer Stoß mit der rechten Wand (s.o.) mit v_x als der Geschwindigkeit in x -

 $\mathbf{v}_x>0$: $\frac{N}{2V}$ Anzahldichte derjenigen Moleküe, die auf die Wand zufliegen

Annahme: $|\mathbf{v}_x|$ für alle Moleküle gleich

Zahl der Moleküle, die in Δt auf die Wand treffen:

$$\begin{split} \Delta N(\Delta t) &= \frac{N}{2V} \stackrel{A}{A} \underbrace{\Delta x}_{v_x \Delta t} \text{Impulsübertrag in } \Delta t \colon \\ \Delta p &= \Delta N(\Delta t) \cdot 2mv_x = \frac{N}{2V} \text{ A v}_x \Delta t \cdot 2mv_x^2 \end{split}$$

 $= \tfrac{N}{V} A m v_x^2 \ \Delta t$

Kraft: $F = \Delta p = \frac{\Delta p}{\Delta t} = \frac{N}{V} Am v_x^2$ Druck: $p = \frac{F}{A} = \frac{N}{V} m v_x^2$

$$\begin{array}{ll} \Rightarrow_{\text{P}} \cdot \text{V} = N m v_x^2 \\ \text{vgl.:} \quad \text{p} \cdot \text{V} = \text{N R T} \\ \Rightarrow_{\frac{1}{2}} \text{R T} = \frac{1}{2} m v_x^2 \end{array} \tag{ideale Gasgleichung}$$

In Wirklichkeit ist $\frac{3}{2}$ kT die mittlere kinetische Energie eines Teilchens bei seiner statistischen Wärmebewegung. → mikroskopische Deutung der Temperatur.

Gleichverteilungssatz (Äquipartitionstheorem):

Die thermische Energie eines Moleküls verteilt sich gleichmäßig auf alle seine Freiheitsgrade. Jeder Freiheitsgrad hat die mittlere kinetische Energie:

$$\bar{E}_{kin,i} = \frac{1}{2} \mathbf{k} \mathbf{T}$$

Oft haben wir es jedoch mit mehr als drei Freiheitsgraden zu tun (z.B. Schwingung und Rotation von Molekülen).

Atom im Festkörper: 6 Freiheitsgrade

4.2.2Maxwellsche Geschwindigkeitsverteilung

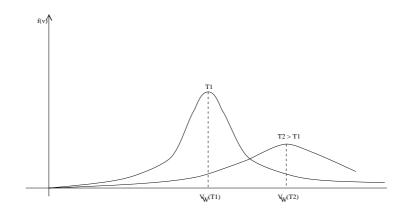
Teilchenzahl: N Temperatur: T

Betrag der Molekülgeschwindigkeit: v Molekülmasse: m

Sie f(v) dv = Zahl der Moleküle mit Geschwindigkeitsbetrag zwischen v und (v+dv)

Man kann zeigen:

$$f(v) = const \ N \underbrace{\frac{4\pi v^2}{statisches Gewicht}}_{statisches Gewicht} \cdot \underbrace{e^{-\frac{m}{2}\frac{v^2}{kT}}}_{Boltzmann-\ Faktor} \cdot e^{-\frac{E\ ner\ qie}{kT}}$$



Fläche unter Geschwindigkeitsverteilungsfunktion immer = N! ${\bf wahrscheinlichste} \,\, {\bf Geschwindigkeit} :$

$$\mathbf{v}_w = \sqrt{\frac{2kT}{m}}$$

 ${
m v}_w = \sqrt{rac{2kT}{m}}$ mittlere Geschwindigkeit:

$$\bar{v} = \frac{2}{\sqrt{\pi}} \mathbf{v}_w = \sqrt{\frac{8kT}{\pi m}}$$

 $ar{v}=rac{2}{\sqrt{\pi}}{
m v}_w=\sqrt{rac{8kT}{\pi m}}$ vgl.: quadratisch gemittelte Geschwindigkeit:

$${
m v}_{rms}=\sqrt{rac{3kT}{m}}$$

4.3 Partialdruck, Dampfdruck, Luftfeuchtigkeit

4.3.1 Daltonsches Gesetz der Partialdrücke

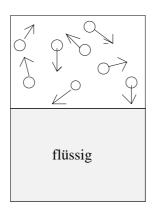
Betrachte Gasgemische:

Der Druck, den ein Gasanteil ohne Anwesenheit der übrigen gase ausüben würde, heißt Partialdruck dieses Gases.

Beim idealen Gas ist der Gesamtdruck eines Gases gleich der Summe der Partialdrücke seiner komponenten (Daltonsches Partialdruckgesetz).

4.3.2 Dampfdruck

Im Gleichgewicht verlassen pro Zeiteinheit genausoviele Moleküle die Flüssigkeit, wie Moleküle in sie eintreten.



Der Partialdruck der flüssigen Komponente, der im Gleichgewicht über der Flüssigkeit herrscht, heißt der Dampfdruck der Flüssigkeit bei dieser Temperatur. Die Zahl der Moleküle, die die Flüssigkeit pro Zeiteinheit verlassen, wächst mit $\sqrt{\{\bar{v}^2\}}$ und damit mit T.

⇒ Dampfdruck steigt mit wachsendem T

4.3.3 Siedepunkt

Erreicht der Dampfdruck der Flüssigkeit den äußeren Gesamtdruck, so ist es möglich, daß sich in der Flüssigkeit Gasblasen bilden.

→im sog. Siedepunkt gilt:

Dampfdruck = Gesamtdruck

⇒Je kleiner der Gesamtdruck, desto niedriger ist der Siedepunkt.

4.3.4 Relative Luftfeuchtigkeit im Taupunkt

 $relative Luft feuchtigke it = \frac{Partial druck\ H_2O}{Dampfdruck\ (T)\ H_2O} \cdot 100\%$

Taupunkt: Temperatur, bei der (bei gegebenem H_2O - Partialdruck) die relative Luftfeucktigkeit 100 % erreicht.

4.4 Reale Gase: van der Waalsche Zustandsgleichung

ideale Gase: p V = n R T ideale

Gasgleichung

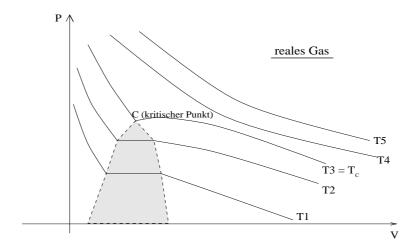
reale Gase: $(p + \frac{a n^2}{V^2})$ (V - b n) = n RT van der

 ${\bf Waalsche\ Zustandsgleichung}$

BINNENDRUCK $\frac{a n^2}{V^2}$: Zusätzlich zum äußeren Druck p der Gefäßwände auf das Gas wirken auf das Gas noch innere anziehende Kräfte.

van der Waalsches Kovolumen b n: das für die Gasmoleküle verfügbare Volumen wird durch das Eigenvolumen vermindert.

Beachte: beim realen Gas wird p erhöht, V dezimiert!



4.5 Joule - Thomson - Effekt und Gasverflüssigung nach Linde

Joule - Thomson - Effekt:

Unterhalb einer sogenannten Inversionstemperatur kühlen Gase beim Expandieren ab, weil sie Arbeit gegen die zwischenmolekularen Anziehungskräfte verrichten müssen.

Die erforderliche Energie wird der Wärmebewegung der Gasmoleküle entzogen.

→ Linde - Verfahren zur Luftverflüssigung:

4.6 Zustandsänderungen und Kreisprozesse idealer Gase

4.6.1 Der erste Hauptsatz der Thermodynamik

INNERE ENERGIE: die in einem System gespeicherte Energie (v.a. thermische Energie)

Die Summe der einem System von außen zugeführten Wärmeenergei ΔQ und der zugeführten (z.B. mechanischen) Arbeit ΔW ist gleich der Zunahme ΔU seiner inneren Energie:

$$\Delta U = \Delta Q + \Delta W$$

Erster Hauptsatz der Thermodynamik (entsprechend dem Energieerhaltungssatz):

"Es ist unmöglich, Energie aus dem nichts zu gewinnen."

ander Formulierung:

"Ein perpetuum mobile erster Art ist unmöglich."

Dieser erste Hauptsatz der Themodynamik ist ein Erfahrungssatz und noch nicht bewiesen.

speziell für das ideale Gas:

Es gibt zwei Möglichkeiten der Energiezufuhr / -abfuhr:

• mechanische Kompression / Expansion:

$$dW = F dx = p A dx = -p dW$$

Wichtig: Vorzeichenkonvention:

 ${\rm dW}>0$: dem System wird Energie zugeführt, d.h. an dem System wird Arbeit verrichtet (d.h.Kompression \Leftrightarrow ${\rm dV}<0$).

dW < 0: System verrichtete Arbeit an seiner Umgebung, d.h. die Energie des Systems nimmt ab (d.h. Expansion $\Leftrightarrow dV > 0$).

 \bullet Zufuhr (dQ > 0) bzw. Abfuhr (dQ < 0) von Wärmeenergie dQ

$$\Rightarrow$$
 dU = dQ + dW = dQ - p · dV (1. Hauptsatz beim idealen Gas)

4.6.2 Die spezifischen Molwärmen C_p und C_v idealer Gase

Bezieht man die spezifischen Wärmen nicht auf 1 kg (Masse) sondern auf ein Mol (Stoffmenge), so spricht man von den SPEZIFISCHEN MOLWÄRMEN C_{molar} :

$$\Delta Q = n C_v \cdot \Delta T$$

mit n als Stoffmenge und $[C_{molar}] = 1 \frac{J}{mol} K$

Bei Gasen muß man dabei zwei Fälle unterscheiden: konstanter <u>Druck</u> oder konstantes <u>Volumen</u>.

innere Energie U eines idealen Gases aus N einatomigen Teilchen

$$U = N \cdot {\bar{E}_{kin}} = N \frac{3}{2}k T$$

$$=$$
 n N_A $\frac{3}{2}$ k T
 $=$ n $\frac{3}{2}$ R T
 $\Rightarrow \Delta U =$ n $\frac{3}{2}$ R T $\cdot \Delta T$
oder allgemein für Teilchen mit **f** Freiheitsgraden:
 $\Delta U =$ n $\frac{f}{2}$ R T $\cdot \Delta T$
Für die Freiheitsgrade gilt:
einatomiges Gas \Rightarrow f = 3
zweiatomiges Gas \Rightarrow f = 5

Spezifische Molwärme bei konstanten Volumen

1. HS:
$$\Delta U = \Delta Q$$
 - p ΔV , wobei $\Delta V = 0$, da $V = {\rm const}$

$$\Rightarrow \Delta U = {\rm n} \ \frac{f}{2} {\rm R} \ {\rm T} \cdot \Delta {\rm T}$$

$$\Delta Q = {\rm n} \ {\rm C}_v \cdot \Delta {\rm T}$$
ergibt: ${\rm C}_v = \frac{f}{2} {\rm R}$
(man erinnere sich: R ist die universelle Gaskonstante)

Spezifische Molwärme bei konstantem Druck

Das Gas wird mit ΔQ erwärmt und dehnt sich daher aus. Das Gas verrichtet so Arbeit anch außen ($\Delta W < 0$) und gibt dadurch einen Teil des zugeführten ΔQ in Form von mechanischer Arbeit wieder nach außen ab. Fazit: Es ist hier mehr Wärme ΔQ erforderlich, um eine bestimmte Temperatur T zu erreichen, als wenn das Volumen konstant bliebe.

$$Cp=C_v+R$$
 $K=rac{C_p}{C_v}=rac{f+2}{f}$ o sog. Adiabatenkoeffizient

4.6.3 Zustandsänderungen idealer Gase

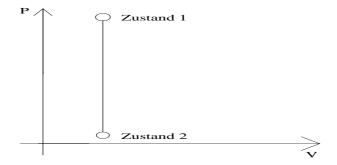
Vorbemerkung

- Unser System sei (in diesem Abschnitt) eine abgeschlossene Stoffmenge eines idealen Gases (n = 1 mol)
- Der "Zustand" bezeichnet die Gesamtheit der makroskopischen Eigenschaften des Systems
- Alle Zustandsgrößen werden durch den Zustand eindeutig festgelegt

Isochore Prozesse (V = const)

$$\begin{split} \Delta \mathbf{V} &= 0 & \Rightarrow \Delta \mathbf{W} = 0 \\ \Rightarrow \Delta \mathbf{Q} &= \Delta \mathbf{U} = \mathbf{C}_v \cdot \Delta \mathbf{T} \\ &= \frac{f}{2} \mathbf{R} \cdot \Delta \mathbf{T} \end{split}$$

4.6. ZUSTANDSÄNDERUNGEN UND KREISPROZESSE IDEALER GASE 89

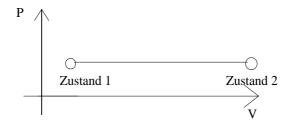


Erwärmen oder Abkühlen des Systems ohne Verrichtung mechanischer Arbeit.

Isobare Prozesse (p = const)

$$\Delta Q = \Delta U + p \Delta V$$
$$= \underbrace{\frac{f}{2} R \Delta T}_{\Delta U} + \underbrace{R \Delta T}_{-\Delta W}$$

Erwärmen oder Abkühlen unter Verrichtung mechanischer Arbeit aufgrund der Volumenänderung.



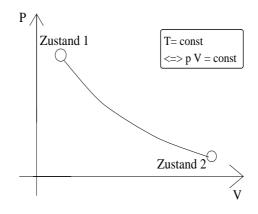
Isotherme Prozesse (T = const)

T = const

1

 $\Delta U = 0$, d.h. keine Änderung der inneren Energie

$$\Delta Q =$$
 - ΔW



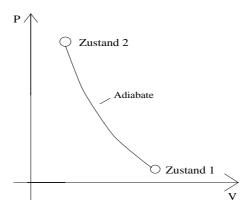
$$\Delta W = RT ln \frac{v_1}{v_2} = -\Delta Q$$

Adiabatische Prozesse ($\Delta Q = 0$)

Kompression oder Expansion ohne Wärmeaustausch mit der Umgebung

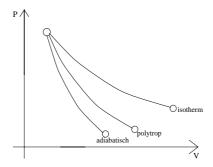
$$\Rightarrow \Delta Q = 0$$
 $\Delta \mathbf{W} = \Delta \mathbf{U}$
 $T^{C_v} \cdot V^R = \mathrm{const}$
 $\mathbf{T} \cdot V^{\kappa-1} = \mathrm{const}$
Adiabaten - Gleichungen
 $\mathbf{p} \cdot V^{\kappa} = \mathrm{const}$

Poisson - Gleichungen oder



Polytrope Zustandsänderungen

- \bullet isotherm: ideale Ankopplung an Wärmebad mit T = const $\Rightarrow p \cdot V = const$
- adiabatisch: keinerlei Wärmeaustausch mit Wärmebad \Rightarrow p $\cdot V^K = \text{const}$ Adiabaten verlaufen im p V Diagramm steiler als Isothermen (da K = $\frac{C_p}{C_v}$ > 1)
- polytrop: Zwischenfall (Realfall): unvollständiger Wärmeaustausch \Rightarrow p $\cdot V^{\alpha}=const$ mit 1 < α < K

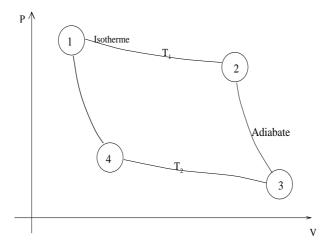


4.6.4 Der Carnotsche Kreisprozeß

Kreisprozeß

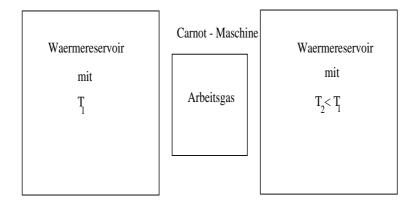
- Eine Abfolge thermodynamischer Prozesse, an deren Ende eine System wieder den Ausgangszustand (gleiche p. V. T wie am Anfang) erreicht, heißt Kreisprozess.
- Kann ein Kreisprozeß in beide Richtungen verlaufen, so heißt er reversibel.

Ablauf des Carnot - Prozesses



Der Carnot - Prozeß ist ein Kreisprozeß aus zwei Isothermen und zwei Adiabaten. <u>Man braucht dazu drei Dinge:</u>

- Das thermodynamische System, das den Prozeß durchläuft (abgeschlossene Menge idealen Gases), sog. ARBEITSGAS.
- (riesiges) Wärmereservoir der Temperatur T₁.
- (riesiges) Wärmereservoir der Temperatur T₂.



WÄRMERESERVOIRS sind riesige Wärmespeicher mit (fast) unendlicher Kapazität und gleichbleibender Temperatur.

beim Carnot - Prozeß passiert folgendes:

- $1 \rightarrow 2$: isotherme Expansion bei idealer Ankopplung an das Wärmereservoir T_1
- $3 \rightarrow 4$: isotherme Kompression bei idealer Ankopplung an das Wärmereservoir T_2
- $2 \rightarrow 3$ und $4 \rightarrow 1$: adiabatische Expansion bzw. Kompression, d.h. $\Delta Q = 0$; d.h. Abkopplung von beiden Wärmebädern, kein Wärmeaustausch.

<u>Die vier Teilschritte des Carnot - Prozesses:</u>

$1 \rightarrow 2$: isotherme Expansion bei T_1 :

$$T = const \Rightarrow \Delta U = 0$$

$$\Delta Q_1 = -\Delta W_{12} =$$

Das bei T_1 zugeführte ΔQ_1 wird vollständig wieder in Form von mechanischer Arbeit abgegeben.

$\mathbf{2} \rightarrow \mathbf{3}$: adiabatische Expansion von \mathbf{V}_2 auf \mathbf{V}_3

Die beim Expandieren nach außen abgegebene oder verrichtete Arbeit entstammt der inneren Energie des Systems ⇒ abkühlung auf T₂

$3 \rightarrow 4$: isotherme Kompression bei T_2

Die bei der mechanischen Kompression am System verrichtete mechanische Arbeit fließt vollständig in das kalte Reservoir ab.

4 \rightarrow 1: adiabatische Kompression von V_4 auf V_1

$$\Delta Q = 0$$

$$\Delta W_{41} = \Delta U = U (T_1) - U(T_2) > 0$$

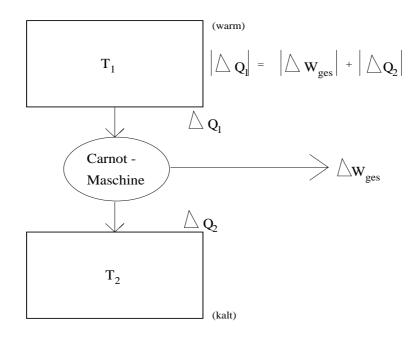
Beachte:
$$\Delta W_{41} + \Delta W_{23} = 0$$

Adiabatische Kompression erwärmt das Arbeitsgas von T_2 auf T_1 .

$$\begin{array}{ll} \underline{\text{für die beiden Adiabaten gilt ferner:}} \\ 2 \rightarrow 3 & T_1 V_2^{K-1} = T_3 V_3^{K-1} & (\star) \\ 4 \rightarrow 1 & T_1 V_1^{K-1} = T_2 V_4^{K-1} & (\star \star) \\ (\star) : (\star \star) & \frac{V_2}{V_1} = \frac{V_3}{V_4} & (\text{beim Carnot - Prozeß}) \ (\star \star \star) \end{array}$$

Energiebilanz und Wirkungsgrad der Carnot - Maschi-4.6.5ne

Energiebilanz



$$\begin{split} \Delta \mathbf{Q}_1 &= \mathbf{R} \ \mathbf{T}_1 \ \ln \frac{V_2}{V_1} \\ (\star\star\star) \\ \Delta \mathbf{Q}_1 &= \mathbf{R} \ \mathbf{T}_2 \ \ln \frac{V_4}{V_3} = \mathbf{R} \ \mathbf{T}_2 \ \ln \frac{V_2}{V_1} \Rightarrow \ \frac{\Delta Q_1}{\Delta Q_2} = -\frac{T_1}{T_2} \\ \Delta W_{ges} &= \Delta \mathbf{W}_{12} + \Delta \mathbf{W}_{23} + \Delta \mathbf{W}_{34} + \Delta \mathbf{W}_{41} \\ &= -\mathbf{R} \ \mathbf{T}_1 \ \ln \frac{V_2}{V_1} - \mathbf{R} \ \mathbf{T}_2 \ \ln \frac{V_4}{V_3} \\ &= -\mathbf{R} \ \mathbf{T}_1 \ \ln \frac{V_2}{V_1} + \mathbf{R} \ \mathbf{T}_2 \ \ln \frac{V_3}{V_4} \\ \Delta W_{ges} &= -\mathbf{R} \ (\mathbf{T}_1 - \mathbf{T}_2) \ \ln \frac{V_2}{V_1} \ < 0 \end{split}$$

das heißt, es wird vom System Arbeit nach außen abgegeben: pro Umlauf ΔW_{ges}

Wirkungsgrad

Ziel einer Wärmekraftmaschine ist die Umwandlung von Wärmeenergie in mechanische Arbeit. Dies gelingt allerdings auch bei der noch so idealen, reibungsfrei laufenden Carnot - Maschine nie zu 100%.

Wirkungsgrad η einer Carnot - Wärmekraftmaschine:

$$\eta = \frac{pro\ Zyklus\ vom\ System\ verrichtete\ Arbeit}{pro\ Zyklus\ dem\ warmen\ Reservoir\ entnommene\ Waerme} = \frac{|\Delta W_{ges}|}{|\Delta Q_1|}$$
 für Carnot - Prozeß:
$$\eta_{max} = \frac{R(T_1 - T_2)\ ln\frac{V_2}{V_1}}{R\ T_1\ ln\frac{V_2}{V_1}} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1} \qquad < 1$$

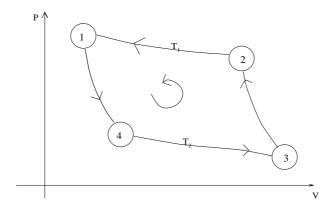
$$\eta_{max} = \frac{R(T_1 - T_2) \ln \frac{V_2}{V_1}}{RT_1 \ln \frac{V_2}{V_1}} = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

nicht - ideale Maschine (Reibung) $\Rightarrow \eta < \eta_{max}$

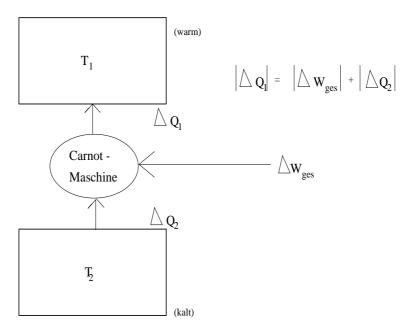
4.6.6 Die rückwärts laufende Carnot - Maschine

Energiebilanz

Kompression bei hoher Temperatur; Expansion bei tiefer Temperatur



Alle Energien wechseln das Vorzeichen:



Unter Verrichtung von mechanischer Arbeit wird Wärmeenergie ΔQ_2 dem kälteren Reservoir entzogen und in das wärmere Reservoir gepumpt.

Verwendung als Kältemaschine (Kühlschrank): Nutzen: unterem Reservoir wird ΔQ_2 entzogen.

Wirkungsgrad als Kältemaschine:
$$\eta_k = \frac{|\Delta Q_2|}{|\Delta W_{ges}|} = \frac{R T_2 \ln \frac{V_2}{V_1}}{R(T_1 - T_2) \ln \frac{V_2}{V_1}} = \frac{T_2}{T_1 - T_2}$$

$$\eta_k = \frac{T_2}{T_1 - T_2}$$

$$\eta_k \text{ ist groß, wenn } (T_1 - T_2) \text{ klein ist.}$$

Verwendung als Wärmepumpe:

Nutzen: Energiezufuhr an das wärmere Reservoir

Wirkungsgrad als Wärmepumpe:

$$\eta_{w} = \frac{|\Delta Q_{1}|}{|\Delta W_{ges}|} = \frac{R T_{1} \ln \frac{V_{2}}{V_{1}}}{R(T_{1} - T_{2}) \ln \frac{V_{2}}{V_{1}}} = \frac{T_{1}}{T_{1} - T_{2}}$$

$$\eta_{w} = \frac{T_{1}}{T_{1} - T_{2}} = \frac{1}{1 - \frac{T_{2}}{T_{1}}} > 1 \quad (!)$$

4.6.7 Stirling - Prozeß und Heißluftmotor

Stirling - Prozeß: Kreisprozeß aus zwei Isochoren und zwei Isothermen.

Im Gegensatz zum Carnot - Prozeß treten noch ΔQ_3 und ΔQ_4 auf mit:

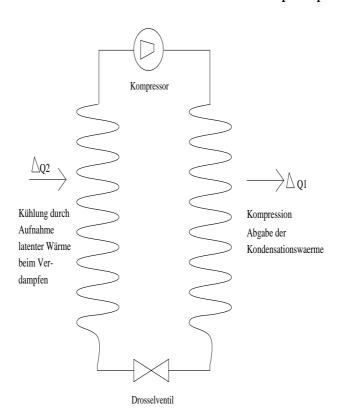
$$\Delta Q_2 =$$
 - $\Delta Q_4 =$ $\mathrm{c}_v \ (\mathrm{T}_2$ - $\mathrm{T}_1)$

 $\eta_{Stirling} \leq \eta_{Carnot}$

Falls ΔQ_2 nicht zwischengespeichert und als ΔQ_4 wieder zugeführt wird, hat die Stirling - Maschine einen geringeren Wirkungsgrad als die Carnot - Maschine. Technische Realisierung mit (teilweiser) Zwischenspeicherung von ΔQ_2 : Heißluft-

motor
(→ist <u>kein</u> Verbrennungsmotor).

4.6.8 Technische Kühlschränke und Wärmepumpe



- Verflüssigung durch Kompression
- Verdampfung nach Entspannung beim Drosselventil

Transport von Wärmeenergie 4.6.9

Man unterscheidet drei Prozesse:

a) Wärmeleitung:

- Medium erforderlich
- kein Transport von Materie

$$rac{dQ}{dt} = - \lambda \cdot \mathbf{A} \cdot rac{dT}{dx}$$
 wobei:

 $\frac{dQ}{dt}$: Wärmestrom

 λ : Wärmeleitfähigkeit des Materials

A: Querschnittsfläche

 $\frac{dT}{dx}$: Wärmeunterschied pro Länge

b) Konvektion:

- Medium erforderlich
- Transport von Materie wegen $\rho = \rho(T)$

Beispiel: warme Luft steigt nach oben.

c) Wärmestrahlung:

- kein Medium erforderlich
- Körper emittiert umso mehr elektromagnetische Wärmestrahlung, je größer T ist.

Beispiel: Glühen ist Wärmestrahlung im sichtbaren Bereich.

4.7 Entropie und der zweite Hauptsatz

4.7.1Formulierung des zweiten Hauptsatzes

Es gibt Prozesse, die nach dem ersten Hauptsatz zwar erlaubt wären, die aber trotzdem nicht beobachtet werden.

(1) Wärmeenergie fließt von selbst immer nur vom wärmeren zum kälteren Körper, nie jedoch umgekehrt.

Der ZWEITE HAUPTSATZ DER THERMODYNAMIK ist ein Erfahrungssatz und nicht beweisbar (Übungsaufgabe).

Äquivalente Formulierung:

(2a) Es gibt keine periodisch arbeitende Maschine, die nichts anderes tut, als einem Reservoir Wärmeenergie zu entziehen und diese in mechanische Arbeit umzuwandeln.

oder kürzer:

(2b) Ein perpetuum mobile zweiter Art ist unmöglich.

Wieso sind (2a) und (2b) zu (1) äquivalent?

Gäbe es eine solche Maschine, so könnte sie eine Wärmepumpe antreiben, die Energie ΔQ vom Kälteren zum Wärmeren pumpt, was (1) wiederspricht.

Es gilt sogar:

Es gibt keine Wärmekraftmaschine, die einen höheren Wirkungsgrad hat, als die ideale Carnot - Maschine.

Beweis:

zwei ideale Carnot - Maschinen, eine als Wärmekraftmaschine, die andere als Wärmepumpe werden zusammengeschaltet.

Wegen $\eta_{WkM} = \frac{1}{\eta_{WP}}$ heben sich die Tätigkeiten beider Maschinen gerade auf. Ersetzte man nun jede Carnot - Maschine durch eine mit höherem Wirkungsgrad, dann würde mehr Wärme ins obere Reservoir gepumpt als diesem entzogen würde \Rightarrow Widerspruch zur Formulierung (1).

4.7.2 Reversible und irreversible Prozesse

Beispiel für einen reversiblen Prozeß: die Carnot-Maschine.

Wieso ist dieser Prozeß reversibel?

Ich kann jederzeit ΔW wieder verwenden, um ΔQ_1 und ΔQ_2 mit einer Carnotschen Wärmepumpe ohne Energiebedarf von außen "zurückzupumpen".

Beispiel für einen irreversiblen Prozeß ist jede unumkehrbare Abkühlung.

4.7.3 Reduzierte Wärme und Entropie

Gesucht ist ein quantitatives maß für die Reversibilität eines Kreisprozesses.

Lösung: reduzierte Wärmemenge $\frac{dQ}{T}$ mit

dQ: ausgetauschte Wärmemenge

T: Temperatur, bei der der Austausch stattfand

definiere dS:= $\frac{dQ}{T}$ bei reversiblen Prozessen

Die Entropie S wird definiert als eine Größe, deren Änderung $\frac{dQ}{T}$ beträgt.

Folge: falls $\Delta Q_{rev} = 0$, so ist $\Delta S = 0$

 \Rightarrow keine Entropie
änderung ΔS bei adiabatischen Prozessen.

Adiabaten sind somit Linien konstanter Entropie, sog. ISENTROPEN.

Reduzierte Wärme und Entropie beim Carnot - Prozeß

Wir fanden:

ir landen:
$$\frac{\Delta Q_1}{\Delta Q_2} = -\frac{T_1}{T_2} \Leftrightarrow \frac{\Delta Q_1}{T_1} + \frac{\Delta Q_2}{T_2} = 0 \\ \Leftrightarrow \Delta S_c = 0$$

Die Summe aller Entropieänderungen bei einem Zyklus des Carnot - Prozesses ist Null; dies gilt für beide Verlaufrichtungen.

→ Die Entropie S hängt nur vom Zustand ab, nicht aber vom Weg, auf dem dieser Zustand erreicht wurde; Die Entropie ist eine sog. Zustandsgröße.

Entropieänderung bei reversiblen und irreversiblen Kreisprozessen

Man findet allgemein: Bei reversiblen Prozessen ist $\Delta S=0.$

Beweis:

Jeder Kreisprozeß läßt sich durch Überlagerung unendlich vieler infinitesimal kleiner Carnot - Prozesse darstellen.

Ferner gilt: Bei irreversiblen Kreisprozessen nimmt die Entropie zu, d.h. $\Delta S > 0$.

4.7.4 Nullpunkt der Entropie und dritter Hauptsatz

Bis jetzt: immer Berechnung von ΔS , nicht aber von S.

Dritter Hauptsatz der Thermodynamik

Am absoluten Nullpunkt ist die Entropie = 0:

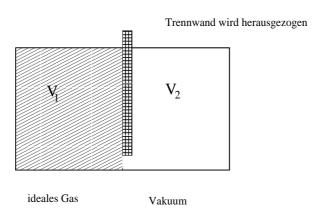
$$T = 0 \Leftrightarrow S = 0$$

$$Mit S(t) = \int_{0}^{T} \frac{dQ_{max}}{T} = \int_{0}^{T} \frac{c_{v}}{T} dT \{T \to 0\} \to 0$$
folds:

 $c_v \to 0$ für $T \to 0$, wobei c_v : Wärmekapazität bei konstantem Volumen \Rightarrow Es ist prinzipiell unmöglich, den absoluten Temperaturnullpunkt zu erreichen.

4.7.5 Der Überströmversuch von Gay - Lussac

Das Experiment



Ziehen der Trennwand \Rightarrow Gas strömt ohne Verrichtung von Arbeit und ohne Wärmeaustausch mit der Umgebung in V_1 .

 $\begin{aligned} & \text{vorher: } V = V_1 \\ & \text{nachher: } V = V_1 + V_2 \end{aligned}$

Die Entropieänderung beim Überströmversuch

 $\Delta S = \frac{\Delta Q}{T}$ mit $\Delta Q = 0$: daraus folgt <u>nicht</u> $\Delta S = 0$, da es sich hier offensichtlich um einen irreversiblen Prozeß handelt.

Wie berechne ich ΔS bei irreversiblen Prozessen?

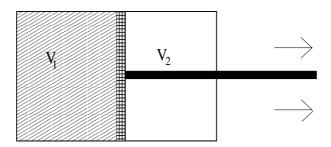
Trick: Entropie ist Zustandsgröße $\Rightarrow \Delta S$ ist nur vom Anfangs - und Endzustand abhängig, nicht aber vom Weg.

Ich denke mir einen Weg von Zustand (1) nach Zustand (2), der nur aus reversiblen Prozessen besteht.

 \Rightarrow Jetzt kann ich ΔS ganz normal berechnen: $\Delta S = \int \frac{dQ}{T}$

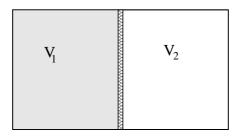
Konkret am Beispiel des Überströmversuches: Betrachte isotherme Expansion (reversibel) von V_1 auf

$$(V_1 + V_2)$$
:

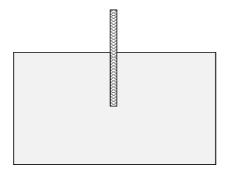


$$\begin{split} \mathrm{dS} &= \frac{dQ_{rev}}{T} = \frac{dU + p\,dV}{T} = \frac{p + nRT\,\frac{dV}{V}}{T} \\ \Rightarrow &\Delta S = \mathrm{nR} \int_{V_1}^{V_1 + V_2} \frac{dV}{V} = \mathrm{nR} \, \ln(\frac{V_1 + V_2}{V_2}) \\ &= \mathrm{N} \, \cdot \! \mathrm{k} \cdot \! \ln(\frac{V_1 + V_2}{V_2}) \end{split}$$

Entropie und Wahrscheinlichkeit



vorher: alle Teilchen in V_2



nachher: Teilchen in V₁ und V₂

Wahrscheinlichkeit, ein Teilchen in V₁ zu finden:

$$w_1(V_1) = \frac{V_1}{V_1 + V_2}$$

 $\begin{array}{l} w_1(V_1)=\frac{V_1}{V_1+V_2}\\ Wahrscheinlichkeit, alle \ N \ Teilchen \ in \ V_1 \ zu \ finden:\\ w_N(V_1)=(\frac{V_1}{V_1+V_2})^N \end{array}$

$$w_N(V_1) = (\frac{V_1}{V_1 + V_2})^N$$

Wahrscheinlichkeit, alle N Teilchen in $V_1\,+\,V_2$ zu finden:

$$\mathbf{w}_N(\mathbf{V}_1 + \mathbf{V}_2) = 1$$

 $\Rightarrow \mathbf{S} = \mathbf{k} \cdot \ln(\mathbf{w})$

Entropie hat mit der statistischen Wahrscheinlichkeit eines Zustandes und damit mit der Zahl seiner Realisierungsmöglichkeiten zu tun.

$$T = 0 \Leftrightarrow S = 0$$
 (dritter Hauptsatz)

 \Rightarrow nur noch eine Realisierungsmöglichkeit bei T=0. Das System nähme bei T=0 (wenn diese Temperatur erreichbar wäre) den perfekt geordneten Zustand

Aber was hat man dann von der ganzen Ordnung? ...

Index

Adiabate, 90	Cavandish: Gravitationsdrehwaage, 40
Adiabatenkoeffizient, 88	Corioliskraft, 15
Äquipartitionstheorem, 84	
Aktionsprinzip, 14	Daltonsches Partialdruckgesetz, 85
Anzahldichte, 83	Dampfdruck, 85
aperiodischer Grenzfall, 61	Dehnung, 43
Arbeit, 31	Differentialgleichung, 58
allgemein, 20	Dispersion, 76
Reibungs-, 17	Dopplereffekt, 75
Auftrieb, 47	Drehbewegung, 17
Avogadro	Drehimpuls, 29, 31
Konstante, 81	Drehimpulserhaltungssatz, 31
Avogadro	${\bf Drehmoment},30,31,35$
Gesetz von, 81	Drehschwingung, 59
	Druck
Barometrische Höhenformel, 48	Flüssigkeitskugel, 49
Bernoulli-Gleichung, 52	isotroper, 44
Beschleunigung, 31	${\bf Schwere-},\ 52$
allgemein, 11	${f S}$ eifenblase, 50
mittlere, 10	Stau-, 52
momentane, 10	T. M. 1.1.49
radial, 18	E-Modul, 43
Winkel-, 31	Einheitsvektor, 18
bewegte Quelle, 75	Einschwingvorgänge, 63
bewegter Beobachter, 76	Elastizitätsgrenze, 42
Bewegung	Elastizitätsmodul, 43
gleichförmig beschleunigte, 11	Elementarwelle, 73
Bewegungsgleichung, 58	Ende
Bezugssystem, 14	geschlossenes, 73
gleichförmig rotierendes, 19	offenes, 73
Bindungsenergie, 39	Energie
Binnendruck, 86	elastische, 46
Boltzmann - Konstante, 82	innere, 87
Boltzmann- Faktor, 84	kinetische, 23, 31
Boyle-Mariotte, 82	der Rotation, 29
-	potentielle, 21
Carnot, 91	Energiedichte

für Dehnung, 46	Gesetz von, 82
für Torsion, 46	Gegenkraft, 16
Energieerhaltungssatz (EES), 23	Geschwindigkeit, 31
Energiestromdichte, 75	mittlere, 9
Energietransport durch die Welle, 75	momentane, 9
Entropie, 97	Winkel-, 31
Nullpunkt, 98	Gleichverteilungssatz, 84
Entropieänderung, 98	Gleitreibungskraft, 16
Expansion, 90	Gradient, 24
- 1	Gravitationsfeldstärke, 39
Feder	Gravitationskonstante, 39
Hook'sche, 59	Gravitationspotential, 39
Federkonstante, 15	$\operatorname{Grenzfall}$
Federkonstante	aperiodisch, 61
eines Stabes, 46	griechische Buchstaben, 8
Federwaage, 15	Gruppengeschwindigkeit, 76
fest, 79	
Festigkeitsgrenze, 42	Haftreibungskonstante, 17
Figurenachse, 36	Haftreibungskraft, 16
Fluchtgeschwindigkeit, 41	Hagen-Poiseuille, Gesetz von, 54
flüssig, 79	harmonischer Oszillator, 59
Fluidinian 50	Hauptsatz
Flußlinien, 50 Fourier	dritter, 98
Analyse, 67	erster, 87
Koeffizienten, 67	$\operatorname{nullter}, 77$
Spektrum, 67	zweiter, 96
Synthese, 67	Hauptträgheitsachsen, 35, 36
freie Achsen, 36	Hebelgesetz, 30
freier Fall, 12	${\it Heißluftmotor},95$
Freiheitsgrade, 84, 88	Hook'sche Feder, 59
Fundamentalschwingungen, 68	Hooksches Gesetz der Torsion, 38
	Hooksches Gesetz, 15, 25, 43
G ase	${ m Huygenssche}$
ideale, 81	${\bf Elementar welle,73}$
${\rm reale},81,86$	Prinzip, 72
gasförmig, 80	
Gasgleichung, ideale, 82	${\rm Impuls},15,31$
Gastheorie	Impulserhaltungssatz, 26
kinetische, 83	Inertialsystem, 14
Gasverflüssigung, 86	${\rm Interferenz}$
Gay - Lussac	$\operatorname{destruktiv},76$
Überströmversuch, 98	konstruktiv, 76
Gay-Lussac	Isentropen, 97

Joule - Thomson	Masse der Erde, 40
Effekt von, 86	Massenmittelpunkt, 26
	Massenträgheitsmoment, 31
Kapillardruck, 50	Massenzahl, 81
Kapillarität, 50	mathemathisches Pendel, 59
Kelvin, absolute Temperatur, 78	Maxwellsche Geschwindigkeitsverteilung,
Keplersches Gesetz	84
1., 40	mol, 81
2., 40	Molwärmen, spezifische, 87
3., 40	, <u>-</u>
Kernladungszahl, 81	Newtonsches Axiom
Kohärenz, 76	1., 14
Kompressibilität, 44	2., 14
Kompression, 90	3., 14
Kompressionsmodul, 44	Newtonsches Reibungsgesetz, 53
Kondensationswärme, 80	Normalkraft, 17
Kontinuitätsgleichung, 51	Nutation, 36
Kopplung	
schwache, 69	Oberflächenspannung, 49
Kraft, 15	Oszillator
elastische, 24	gedämpft, 60
konservative, 23	harmonisch, 59
nicht-konservative, 23	Dontieldmielt 85
Tangential-, 30	Partialdruck, 85
Kraftkonstante, 31	Pascalsches Prinzip, 46 Pendel
Kreisbewegung, 18	
Kreisel, 35	mathematisch, 59
Kreisfrequenz, 18, 25	physikalisch, 60
Kreisprozeß, 91	Perpetuum Mobile, 23
Kriechfall, 61	Phasengeschwindigkeit, 72
Kühlschrank, 94, 95	Phasensprung, 73
	Phasenumwandlungen, 79
Längenausdehnung, 78	physikalisches Pendel, 60
Leistung, 21, 31	Pitol-Rohr, 52
der Rotation, 29	Poisson-Zahl, 43
mechanische, 21	Potential, 23
Linde Verfahren, 86	Präzession, 37
Lissajous Figur, 66	Prandelsches Staurohr, 52
Luftfeuchtigkeit, 85	Prinzip von Archimedes, 48
m relative,~85	Proportionalitätsgrenze, 42
N 45	Prozesse
Masse, 15	adiabatische, 90
schwere, 16	irreversible, 97
träge, 16	isobare, 89

isochore, 88	harmonisch, 58, 59
isotherme, 89	inharmonisch, 58
polytrope, 90	Überlagerung, 63
reversible, 97	orthogonal, 65
	parallel, 63
Querkontraktion, 43	Schwingungsbauch, 73
	Schwingungsknoten, 73
Radialbeschleunigung, 19	Siedepunkt, 85
Reaktionsprinzip, 14	Skalarprodukt, 21
Rechtssystem, 18	Spannarbeit, 31
Reibungskräfte, 16	Stirling - Prozeß, 95
Reißgrenze, 42	Stoffmenge, 81
Resonanz, 63	Stokes-Gesetz, 60
Resonanzfrequenz, 63, 73	Stokesches Gesetz, 54
Resonanzüberhöhung, 63	Stoß
Reynoldszahl, 54	elastischer, 27
Rollbedingung, 34	gerader, zentraler, 27
Rotation, 17, 29	gerader, zentraler inelastischer, 27
Rückstellkraft, 49	Strahlungspyrometer, 79
Satellitenbahnen, 41	Strömung
	stationäre, 50
Satz von Steiner, 34 Scheinkräfte, 19	Strömung
Schermodul, 44	laminare, 54
	turbulente, 54
Scherspannung, 44 Scherung, 44	viskose, 53
Schmelzwärme, 79	Superpositionsprinzip, 12
Schwebung	Symmetrieachse, 36
rein, 64	,
unrein, 64	Taupunkt, 85
Schweredruck, 47, 50	Temperatur, 77
Schweredruck, 47, 50 Schwerelosigkeit, 16	Thermoelemente, 79
Schwerpunkt, 26	Thomson, 86
Schwingfall, 60	Torsion, 45
Schwingung	Torsionskonstante, 45
harmonische, 24	Torsionsmodul, 44
'	Trägheitsmoment, 29, 32
einer Hookschen Feder, 25 Energieerhaltung, 25	Trägheitsprinzip, 14
Schwingungen, 57	Translation, 29
Dreh- , 59	Überströmversuch, 98
erzwungen, 62	Umlaufzeit, 18
gegenphasig, 68	universelle Gaskonstante, 82
gekoppelt, 67	van der Waals 86
gleichphasig, 68	van der Waals, 86

Vektor axialer, 18 Vektorprodukt, 18 Verdampfungswärme, 80 Verformung elastische, 42 plastische, 42 plastische, 42 Viskosität, 53 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals van der, 86
Vektorprodukt, 18 Verdampfungswärme, 80 Verformung elastische, 42 plastische, 42 viskosität, 53 Volumenausdehnung, 79 Waals Zustand ungebundener, 41 Zustandsänderung, 88 Zustandsgleichung, 82 Viskosität, 53 Volumenausdehnung, 79
Verdampfungswärme, 80 gebundener, 41 Verformung Zustand elastische, 42 ungebundener, 41 plastische, 42 Zustandsänderung, 88 Viskosität, 53 Zustandsgleichung, 82 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals
Verformung elastische, 42 plastische, 42 Viskosität, 53 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals Zustands ünderung, 88 Zustandsgleichung, 82 Vustandsgleichung, 82 Vustandsgleichung, 82
elastische, 42 ungebundener, 41 plastische, 42 Zustandsänderung, 88 Viskosität, 53 Zustandsgleichung, 82 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals
plastische, 42 Zustandsänderung, 88 Viskosität, 53 Zustandsgleichung, 82 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals
Viskosität, 53 Zustandsgleichung, 82 Volumenausdehnung, 79 waagrechter Wurf, 12 Waals
Volumenausdehnung, 79 waagrechter Wurf, 12 Waals
Waals
van der, 86
Wärme
latente, 79
spezifische, 79
Wärmeausdehnungskoeffizient, 79
Wärmeenergie, 77, 79
Wärmepumpe, 95
Wasser, 80
Wasser
Dichteanomalie, 81
Weg, 31
Wellen, 71
ebene, 72
gegenphasig, 76
gleichphasig, 76
Kreis-, 72
Kugel-, 72
longitudinale, 72
stehende, 73
transversale, 72
Wellenarten, 72
Wellenfront, 72
Wellengleichung, 72
Wellenlänge, 71
Wellenzahl, 71
Widerstandsthermometer, 79
Winkel, 29, 31
Winkelbeschleunigung, 19, 29
Winkelgeschwindigkeit, 18, 29
Winkelrichtgröße, 31
Wirkungsgrad, 21, 93