Übungen zur Experimentalphysik A

Prof. Dr. Th. Schimmel Dr. F. Wertz

2. Übungsblatt

Kinematik und Dynamik

Es empfiehlt sich, zuerst allgemein zu rechnen und erst in die Endformeln Zahlenwerte einzusetzen. In den Übungen für Biologen und Chem. Biologen werden vorwiegend mit "●" gekennzeichnete Aufgaben besprochen.

- 1. Ein Stein wird in der Höhe h über dem Erdboden mit der Anfangsgeschwindigkeit v_0
 - a) senkrecht nach oben
 - b) senkrecht nach unten
 - c) waagrecht nach vorne

geworfen. Von Luftreibung werde abgesehen. Nach welcher Zeit erreicht er jeweils den Erdboden und wie groß sind die Endgeschwindigkeiten?

Zahlenbeispiel: h = 15 m; $v_0 = 10 \text{ m/s}$.

Ergebnisse: a) t = 3.0 s; v = 19.9 m/s; b) t = 1.0 s; v = 19.9 m/s; c) t = 1.75 s; v = 19.9 m/s.

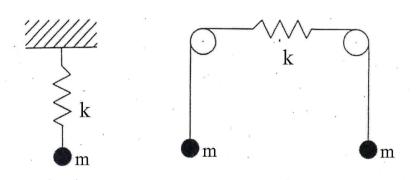
- 2. Von einem horizontalen Förderband in der Höhe h über dem Boden soll Kohle in einen Behälter in der Entfernung d abgeworfen werden.
 - a) Welche Laufgeschwindigkeit v muss das Band haben?
 - b) Welche neue Wurfweite d₂ ergibt sich, wenn das Förderband bei der gleichen Geschwindigkeit eine Steigung von 20° gegen die Horizontale aufweist?

Zahlenbeispiel: h = 2.5 m; d = 1.8 m.

Ergebnisse: a) v = 2.5 m/s; b) $d_2 = 1.9 \text{ m}$.

- 3. Ein Fußball der Masse m werde bei x=0 im Abstand d von einem Tor vom Boden aus mit einer Anfangsgeschwindigkeit v_0 so auf das Tor gekickt, dass er die Torlinie bei x=d in einer Höhe z=h horizontal passiert (Luftreibung und Größe des Balles seien vernachlässigt).
 - a) Berechnen und skizzieren Sie die Funktion z(x) der Bahnkurve.
 - b) Welche Beträge haben die Anfangsgeschwindigkeit v_0 und die Geschwindigkeit v_d beim Passieren der Torlinie?
 - c) Welche als konstant angenommene Kraft erfährt der Tormann, wenn er den Ball auf der Torlinie während der Zeit \(\Delta t \) fängt?

Zahlenwerte: d = 15 m; h = 2 m; m = 0.42 kg; $\Delta t = 0.1$ s.


Ergebnisse: b) $v_0 = 24.3 \text{ m/s}$; $v_d = 23.5 \text{ m/s}$; c) F = 98.7 N.

(ehemalige Klausuraufgabe)

4. Ein Känguru macht beim Rennen 6,0 m weite und 1,5 m hohe Sprünge. Wie groß ist die horizontale (Lauf-)Geschwindigkeit v des Kängurus?

Ergebnis: $v_x = 5.4$ m/s.

5. Was zeigen die beiden Federwaagen jeweils an und warum?

- 6. Eine Aufzugskabine der Masse m_A ist über eine masselose Rolle mit einem Gegengewicht gleicher Masse verbunden. Die Kabine sei mit einer Person des Gewichts 700 N besetzt. \bullet
 - a) Mit welcher Beschleunigung a würde die Aufzugskabine fallen, wenn die Bremseinrichtung versagt (Reibung soll vernachlässigt werden)?
 - b) Im Notfall gelte eine Aufprallgeschwindigkeit von v_0 als zumutbar. Mit wie vielen Personen (Masse jeweils 75 kg) darf der Aufzug maximal besetzt sein, damit dieser Wert bei einem Fall aus der Höhe h nicht überschritten wird?

Zahlenbeispiel : m_A =1000 kg; v_0 =6 m/s; h=30 m.

Ergebnisse: a) $a = 0.34 \text{ m/s}^2$; b) 1 Person.