Übungen zur Experimentalphysik A

WS 2017/2018

Prof. Dr. Th. Schimmel Dr. F. Wertz

4. Übungsblatt

Es empfiehlt sich, zuerst allgemein zu rechnen und erst in die Endformeln Zahlenwerte einzusetzen. In den Übungen für (Chem.) Biologen werden vorwiegend mit "•" markierte Aufgaben besprochen.

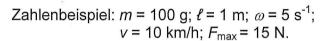
Kreisbewegung, Corioliskraft

- Ein Teilchen bewege sich mit konstanter Geschwindigkeit v auf einer Kreisbahn mit dem Radius r. ●
 - a) Wie groß ist seine Winkelgeschwindigkeit um den Kreismittelpunkt?
 - b) Geben Sie die Umlaufzeit und die Umlauffrequenz des Teilchens an.
 - c) Wie viele Umdrehungen führt das Teilchen in 30 s aus?

Zahlenbeispiel: v = 20 m/s; r = 100 m.

Ergebnisse: a) $\omega = 0.2 \text{ s}^{-1}$; b) T = 31.4 s; $f = 0.032 \text{ s}^{-1}$; c) 0.955 U.

- Zwei Körper werden beschleunigt bewegt. In beiden Fällen sei der Betrag der Beschleunigung gleich und zeitlich konstant. Bei Körper A steht die Beschleunigung stets senkrecht auf der Geschwindigkeit. Bei Körper B zeigt die Beschleunigung stets in Richtung seiner Geschwindigkeit. Zum Zeitpunkt t = 0 sei Körper B in Ruhe.
 - a) Welche Form hat die jeweilige Bahn der beiden Körper?
 - b) Welche Strecke legt Körper B in der Zeit zurück, in der Körper A einen Viertelkreis durchläuft?
 - c) Zum Zeitpunkt t_2 seien die Beträge der Geschwindigkeiten beider Körper gleich. Welche Strecke haben Körper A und Körper B bis dahin jeweils zurückgelegt?
- 3. Ein Karussell mit dem Radius r werde aus der Ruhe mit einer konstanten Winkelbeschleunigung $d\omega/dt$ in Rotation versetzt. Wie groß sind nach einer Beschleunigungszeit t_0
 - a) die Winkelgeschwindigkeit ω des Karussells?
 - b) die Tangentialbeschleunigung a_t sowie die Zentralbeschleunigung a_z und die Zentralkraft auf eine Masse m am Rand des Karussells?


Zahlenbeispiel: $d\omega/dt = 0.1 \text{ s}^{-2}$; r = 5 m; $t_0 = 5 \text{ s}$; m = 75 kg.

Ergebnisse: a) $\omega = 0.5 \text{ s}^{-1}$; b) $a_t = 0.5 \text{ m/s}^2$; $a_z = 1.25 \text{ m/s}^2$; $F_z = 94 \text{ N}$.

4. Eine punktförmig gedachte Masse m befinde sich am Ende eines masselosen Seils, das am Punkt O im Schwerefeld der Erde (z-Richtung) aufgehängt ist. Die Masse m führe in der x-v-Ebene eine

Kreisbewegung um die z-Achse aus.

- a) Um welchen Winkel α₁ ist der Faden bei einer Winkelgeschwindigkeit ω ausgelenkt?
- b) Wie groß ist der Winkel α_2 bei einer gegebenen Umlaufgeschwindigkeit von ν ?
- c) Welcher Winkel α_{max} kann maximal erzielt werden, falls das Seil bei einer Belastung mit der Kraft F_{max} reißt?

Ergebnisse: a) $\alpha_1 = 67^\circ$; b) $\alpha_2 = 47^\circ$; c) $\alpha_{max} = 86^\circ$.

- 5. Auf einem Karussell, das sich mit konstanter Winkelgeschwindigkeit ω dreht, werfen sich Max und Katrin einen Ball zu. Max steht im Zentrum des Karussells, Katrin im Abstand *R* davon. Beim Abwurf hat der Ball jeweils den Geschwindigkeitsbetrag *v*. Die Schwerkraft kann vernachlässigt werden.
 - a) Wie lange fliegt der Ball von Max zu Katrin?
 - b) In welcher Richtung muss Max den Ball zu Katrin werfen?
 - c) In welcher Richtung muss Katrin den Ball zurückwerfen?
 - d) Wie lange ist der Ball dabei unterwegs?
 - e) Oberhalb welcher kritischen Winkelgeschwindigkeit kann Katrin Max nicht mehr mit dem Ball erreichen?
- 6. In 60 Grad nördlicher Breite fährt ein Eisenbahnzug mit der Masse 1000 t mit 110 km/h in südlicher Richtung. Welche Gesamtkraft übt er auf Grund der Erdrotation quer zur Fahrtrichtung auf die Schienen aus? In welche Richtung zeigt die Querkomponente der Kraft?

Ergebnis: F = 3849 N.