WS 2017/2018

Übungen zur Experimentalphysik A Prof. Dr. Th. Schimmel

Dr. F. Wertz

6. Übungsblatt

Schwingungen

Es empfiehlt sich, zuerst allgemein zu rechnen und erst in die Endformeln Zahlenwerte einzusetzen In den Übungen für (Chem.) Biologen werden vorwiegend mit "•" markierte Aufgaben besprochen.

- 1. Ein Körper der Masse m sei an einer horizontalen Feder mit der Federkonstante D befestigt. Die Feder werde um s aus ihrer Ruhelage ausgelenkt und zum Zeitpunkt t=0 losgelassen. \bullet
 - a) Wie groß ist die Schwingungsfrequenz?
 - b) Wie groß ist die Schwingungsdauer?
 - c) Wie groß ist die höchste Beschleunigung und Geschwindigkeit?
 - d) Wann erfolgt der erste Durchgang durch die Ruhelage?
 - e) Wie ändern sich die in a) bis d) berechneten Größen, falls die Feder vertikal im Schwerefeld der Erde angeordnet ist?

Zahlenbeispiel: m = 2.0 kg; D = 10 N/m; s = 10 cm. Ergebnisse: a) f = 0.36 Hz; b) T = 2.8 s; c) $a_{\text{max}} = 0.50$ m/s²; $v_{\text{max}} = 0.22$ m/s; d) t = 0.70 s.

- 2. Ein an einer vertikalen Feder hängender Gegenstand schwinge unter dem Einfluss der Schwerkraft mit der Amplitude s um seine Gleichgewichtslage s_0 .
 - a) Bestimmen Sie die Gesamtenergie des Systems in Bezug auf die ungespannte Feder.
 - b) Wie groß ist die in der Feder gespeicherte Energie, wenn der Gegenstand seinen tiefsten Punkt erreicht hat?
 - c) Bestimmen Sie das Maximum der kinetischen Energie.

Zahlenbeispiel: m = 1,5 kg; s_0 = 2,8 cm; s = 2,2 cm. Ergebnisse: a) E_{qes} = -79 mJ; b) $E_{\text{Feder,max}}$ = 0,66 J; c) $E_{\text{kin,max}}$ = 0,13 J.

- 3. Ein mit einer vertikalen Feder an der Hörsaaldecke befestigter schwerer Block der Masse M schwinge mit einer Frequenz f und einer Amplitude s. Wenn er seinen tiefsten Punkt erreicht hat, werde ein kleiner Kieselstein der Masse m auf ihn gelegt, der ohne Einfluss auf die Schwingung bleibt, d.h. m << M.
 - a) Bei welcher Auslenkung aus der Gleichgewichtslage des Blocks verliert der Kieselstein seinen Kontakt zum Block?
 - b) Mit welcher Geschwindigkeit verlässt der Kieselstein den Block?
 - c) Welche Höhe über der Gleichgewichtslage des Blocks erreicht der Kieselstein maximal?

Zahlenbeispiel: f = 4,0 Hz; s = 7,0 cm. Ergebnisse: a) $x_{Grenz} = 1,55$ cm; b) $v_{Grenz} = 1,72$ m/s; c) $s_{Kiesel} = 16,5$ cm.

- 4. Ein Sandsack der Masse M hängt an einem masselosen Faden der Länge ℓ . Ein Geschoss der Masse m trifft mit der Geschwindigkeit v auf den Sandsack und bleibt in ihm stecken. \bullet
 - a) Mit welcher Geschwindigkeit v´ bewegt sich der Sandsack aus der Ruhelage?
 - b) Bis zu welchem Winkel schwingt der Sandsack nach der Auslenkung aus der Ruhelage?
 - c) Welcher relative Anteil der kinetischen Energie des Geschosses wird beim Eindringen in den Sandsack in Wärme umgewandelt?
 - d) Mit welcher Frequenz schwingt der Sandsack?

Zahlenbeispiel: M = 25,0 kg, ℓ = 5,00 m, m = 10,0 g, ν = 500 m/s. Ergebnisse: a) ν' = 0,20 m/s; b) α = 1,64°; c) $\Delta E/E$ = 99,96%; d) f = 0,22 Hz.