Felder und Wellen

WS 2011/2012

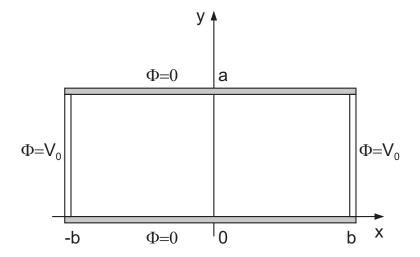
7. Übung

18. Aufgabe

Eine in z-Richtung unendlich ausgedehnte Anordnung besteht aus zwei Platten bei y=0 und y=a, zwischen x=-b und x=b mit dem Potential $\Phi=0$ und zwei gegenüber den anderen Platten isolierten Platten bei x=-b und x=b, zwischen y=0 und y=a mit dem Potential $\Phi=V_0$. Berechnen Sie das Potential im Bereich $x=-b\ldots b,\ y=0\ldots a$ mit dem Separationsansatz für die Laplacegleichung.

Hinweise:

- Beachten Sie die Analogien zur 16. Aufgabe. Ab welchem Punkt im Rechenweg unterscheidet sich die Vorgehensweise?
- Nutzen Sie die Symmetrie der Anordnung, um Koeffizienten zu eliminieren.
- Substituieren Sie, wenn Sie keine weiteren Randbedingungen mehr erfüllen können, $C'_n = C_n \cosh \frac{n\pi b}{a}$ und bestimmen sie dann C'_n mittels Fourierreihenentwicklung. $(e^{kx} + e^{-kx} = 2\cosh kx)$



19. Aufgabe

Eine in y-Richtung unendlich ausgedehnte Linienladung (Ladung je Längeneinheit ϱ_l) befindet sich im Vakuum bei $x=0,\ z=h$. Der Halbraum $z\leq 0$ ist ideal leitend. Bestimmen Sie die Feldstärke \vec{E} im ganzen Raum, sowie die Flächenladungsdichte σ auf der Leiteroberfläche bei z=0 mit der Spiegelungsmethode. Berechnen Sie die Gesamtladung auf der Leiteroberfläche bezogen auf die Leiterlänge $(\frac{Q}{l})$.

Bestimmen Sie das Potential Φ im ganzen Raum, wobei $\Phi(\infty) = 0$ gelten soll.

Hinweis: Das Potential der Linienladung ohne die gedachte Spiegelladung ist nicht endlich. Mittels unbestimmter Integration kann dieses Problem umgangen werden!

