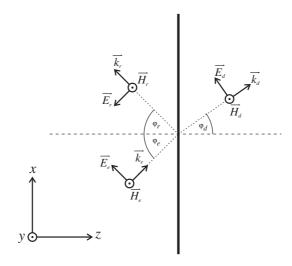
$\begin{array}{c} \text{Felder und Wellen} \\ \text{ws } \text{\tiny 2011/2012} \\ \textbf{14. } \ddot{\textbf{U}} \textbf{bung} \end{array}$

33. Aufgabe



Eine ebene, linear polarisierte Welle trifft unter dem Winkel φ_e bei z=0 auf ein optisch dichteres Medium (s. Skizze). Im Gegensatz zur Aufgabe 31 liegt diesmal das E-Feld in der Einfallsebene und das H-Feld steht orthogonal auf der Einfallsebene. Ein Teil der Welle wird reflektiert, ein Teil wird durchgelassen. Im linken Medium gilt $\varepsilon=\varepsilon_1$ und im rechten $\varepsilon=\varepsilon_2$. Ansonsten gilt überall $\mu=\mu_0$ und $\kappa=0$. Die H-Felder der schräg laufenden Welle lassen sich mit Hilfe des Wellenvektors \vec{k} und des Ortsvektors \vec{r} wie folgt beschreiben. (Der Ortsvektor ist hier als Vektor in kartesischen Koordinaten aufzufassen: $\vec{r}=x\vec{e}_x+y\vec{e}_y+z\vec{e}_z$)

Hinlaufende Welle:

$$\vec{H}_e = H_e e^{j(\omega t - \vec{k}_e \cdot \vec{r})} \vec{e}_y$$

$$\vec{k}_e = k_1 (\cos \phi_e \vec{e}_z + \sin \phi_e \vec{e}_x)$$

Reflektierte Welle:

$$\vec{H}_r = H_r e^{j(\omega t - \vec{k}_r \cdot \vec{r})} \vec{e}_y$$

$$\vec{k}_r = k_1 \left(-\cos \phi_r \vec{e}_z + \sin \phi_r \vec{e}_x \right)$$

Durchgelassene Welle:

$$\vec{H}_d = H_d e^{j(\omega t - \vec{k}_d \cdot \vec{r})} \vec{e}_y$$
$$\vec{k}_d = k_2 (\cos \phi_d \vec{e}_z + \sin \phi_d \vec{e}_x)$$

Hinweis: $k = \omega \sqrt{\mu \varepsilon}$ und $\Gamma = \sqrt{\frac{\mu}{\varepsilon}}$.

- a) Verwenden Sie für den Fall t = 0 und $\vec{r} = x\vec{e}_x$ die Stetigkeitsbedingung der Tangentialkomponente des H-Feldes, um die Reflexions- und Transmissionswinkel zu berechnen (Hinweis: Die Gleichung muss für alle x eine Lösung haben).
- b) Berechnen Sie für den Fall t=0 und $\vec{r}=\vec{0}$ mit folgendem Zusammenhang das E-Feld:

$$\vec{E} = \Gamma \vec{H} \times \vec{e}_k$$

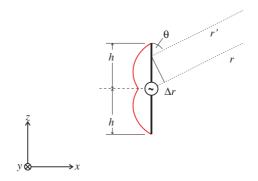
Hinweis: Da $sin^2 + cos^2 = 1$ ist, gilt z.B. $\vec{e}_{k_e} = \cos \phi_e \vec{e}_z + \sin \phi_e \vec{e}_x$.

- c) Stellen Sie nun die Stetigkeitsbedingungen für alle Felder auf $(t = 0 \text{ und } \vec{r} = \vec{0})$ und berechnen Sie so H_d und H_r .
- d) Berechnen sie für den Fall $\varepsilon_{r2} = 4$ und $\varepsilon_{r1} = 1$ den Reflexionskoeffizient $r = \frac{S_r}{S_e} = \frac{E_r^2}{E_e^2} = \frac{H_r^2}{H_e^2}$ für diese Aufgabe und für das Ergebnis aus Aufgabe 31. Zeichnen Sie $r(\phi_e)$ für beide Fälle in ein Diagramm. Anmerkung: Die relative Dielektrizät von Glas liegt im bereich von 3,5 12. Was passiert also, mit an Fensterglas reflektiertem Licht?

34. Aufgabe

Gegeben ist eine lineare Dipolantenne der Höhe 2h, mit folgender von z abhängiger Stromverteilung:

$$I = I_0 \sin\left(\frac{2\pi}{\lambda}(h - |z|)\right)$$



a) Das Fernfeld eines infinitesimal kleinen Dipols ist:

$$dE_{\theta} = \frac{1}{4\pi\varepsilon} I \sin \theta \frac{\omega}{c_0^2 r} e^{j(\omega t - kr)} dl$$

Berechnen Sie das Fernfeld für große r, indem Sie die einzelnen Dipolbeläge über die Höhe aufintegrieren. Beachten Sie, dass die Amplitude des Stroms von z abhängt und dass mit zunehmenden z ein Wegunterschied Δr zu berücksichtigen ist. Hinweis: $\int_{z=0}^{h} \sin(k(h-z)) \cos(kz \cos\theta) dz = \frac{\cos(kh \cos\theta) - \cos kh}{\sin^2 \theta}$

b) Für den Pointingvektor gilt: $S \sim E^2$. Skizieren Sie die Richtcharakteristik ($S(\theta)$) der Dipolantenne für $h = \lambda/4, \ h = \lambda/2, \ h = \lambda 3/4, \ h = \lambda$ in einem Polardiagramm (z.B. mit Maple). Hinweis: $k = \frac{2\pi}{\lambda}$