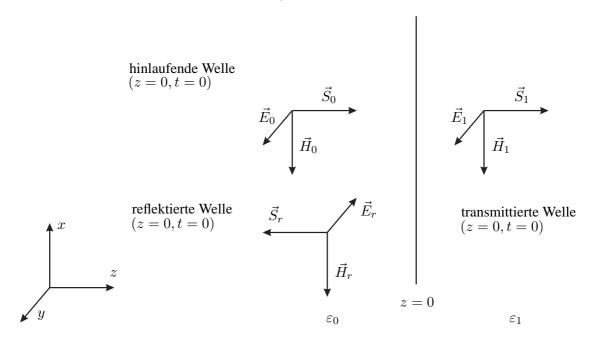
Felder und Wellen

WS 2013/2014

11. Übung


27. Aufgabe

Eine ebene Welle breitet sich im Vakuum in z-Richtung aus $(\frac{\partial}{\partial x} = 0, \frac{\partial}{\partial y} = 0)$.

- a) Leiten Sie für diesen Fall die Wellengleichung aus den Maxwellgleichungen her.
 - Hinweis: Die Aufgabe ist ein Spezialfall der Herleitung im Skript.
 - Gehen sie von den Maxwellgleichungen $rot\vec{E}=-\mu_0\frac{\partial\vec{H}}{\partial t}$ und $rot\vec{H}=\varepsilon_0\frac{\partial\vec{E}}{\partial t}$ aus und formulieren Sie diese komponentenweise aus. Man erhält vier gekoppelte, partielle Differenzialgleichungen. Formen Sie das Gleichungssystem so um, dass Sie vier entkoppelte PDGL (das sind die Wellengleichungen) erhalten.
- b) Zeigen Sie dass jede Funktion $f\left(z\pm ct\right)$ die Wellengleichung für diesen Fall erfüllt.
- c) Können sich longitudinale Wellen ausbreiten? (Gehen Sie von $div\vec{B}=0$ und $div\vec{D}=\varrho=0$ aus.)

28. Aufgabe

Eine ebene, linear polarisierte elektromagnetische Welle der Amplitude E_0 breitet sich in einem ladungsfreien, nicht magnetischen Dielektrikum mit der Dielektrizitätskonstante ε_0 und der Leitfähigkeit $\kappa=0$ in z-Richtung aus. An der Stelle z=0 trifft die Welle senkrecht auf eine Grenzfläche zu einem weiteren ladungsfreien, nicht magnetischen, nicht leitenden Dielektrikum mit der Dielektrizitätskonstanten ε_1 und wird dort teilweise zurückreflektiert und teilweise durch die Grenzfläche hindurchgelassen.

- a) Berechnen Sie aus dem elektrischen Feld, sowohl für den Fall einer hinlaufenden ($\vec{E}_0=E_0e^{j(\omega t-k_0z)}\vec{e}_y$) als auch einer zurücklaufenden ($\vec{E}_r=E_re^{j(\omega t+k_0z)}\vec{e}_y$) Welle, das Magnetfeld \vec{H}_0 und \vec{H}_r .
- b) Berechnen Sie die Amplituden der Felder in Abhängigkeit von E_0 . Verwenden Sie für die \vec{E} und \vec{H} -Felder der einfallenden, reflektierten und durchgelassenen Welle einen Ansatz in Form einer ebenen Welle mit den unbekannten Amplituden E_0, E_r, E_1 und H_0, H_r, H_1 . An der Grenze müssen die Stetigkeitsbedingungen für beide Felder erfüllt sein.
- c) Berechnen Sie die Energiestromdichte der Wellen für den Fall $\varepsilon_1=4\varepsilon_0$. Ist die Energieerhaltung erfüllt?