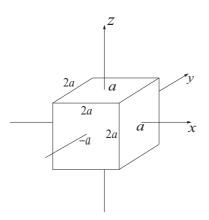
Felder und Wellen

WS 2015/2016

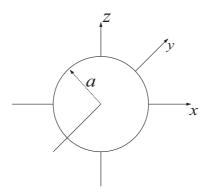

1. Übung

1. Aufgabe

Gegeben ist folgendes Vektorfeld

$$\vec{V} = \frac{k}{3} \left(x \, \vec{e}_x + y \, \vec{e}_y + z \, \vec{e}_z \right)$$

- a) Berechnen Sie die Divergenz von \vec{V} .
- b) Integrieren Sie das Feld über die Oberfläche eines im Nullpunkt zentrierten Würfels der Kantenlänge 2a.
- c) Integrieren Sie die Divergenz von \vec{V} über das Volumen des Würfels. Vergleichen Sie mit Teilaufgabe b).

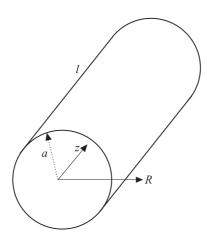

2. Aufgabe

Gegeben ist folgendes Vektorfeld (in Kugelkoordinaten)

$$\vec{V} = \frac{k}{3} \, r \, \vec{e_r}$$

a) Berechnen Sie die Divergenz von \vec{V} .

- b) Integrieren Sie das Feld über die Oberfläche einer im Nullpunkt zentrierten Kugel mit dem Radius a.
- c) Integrieren Sie die Divergenz von \vec{V} über das Volumen der Kugel. Vergleichen Sie mit Teilaufgabe b).



3. Aufgabe

Gegeben ist folgendes Vektorfeld (in Zylinderkoordinaten)

$$\vec{V} = \frac{k}{3} R \, \vec{e}_R + k \vec{e}_z$$

- a) Berechnen Sie die Divergenz von \vec{V} .
- b) Integrieren Sie das Feld über die Oberfläche eines im Nullpunkt zentrierten Zylinders mit dem Radius a und der Länge l.
- c) Integrieren Sie die Divergenz von \vec{V} über das Volumen des Zylinders. Vergleichen Sie mit Teilaufgabe b).

