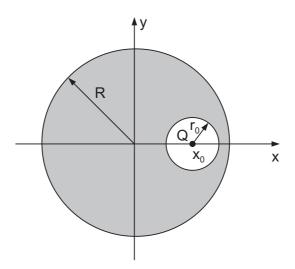
Felder und Wellen

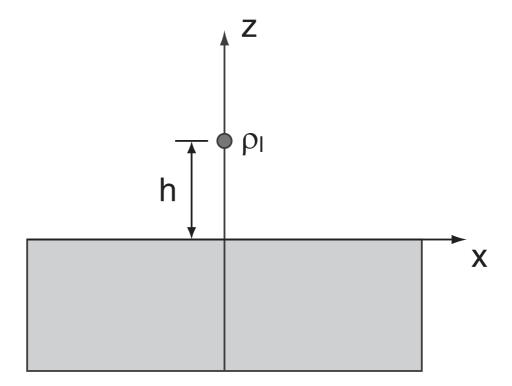

WS 2015/2016

7. Übung

17. Aufgabe

Eine ideal leitende Kugel mit dem Radius R befindet sich im Ursprung eines Koordinatensystems. Die Kugel ist isoliert und hat die Gesamtladung 0. In der Kugel befindet sich ein kugelförmiger Hohlraum mit dem Mittelpunkt $(x_0, 0, 0)$ und dem Radius r_0 . Im Mittelpunkt des Hohlraums befindet sich eine Punktladung der Stärke Q. Berechnen Sie das \vec{E} -Feld im ganzen Raum.

Hinweis: Berechnen Sie das \vec{E} -Feld für r < R in einem lokalen auf $(x_0, 0, 0)$ zentrierten Kugelkoordinatensystem. Überlegen Sie sich genau, welche Gesetze für elektrische Felder in idealen Leitern gelten. Die Aufgabe hat eine einfache Lösung.



18. Aufgabe

Eine in y-Richtung unendlich ausgedehnte Linienladung (Ladung je Längeneinheit ϱ_l) befindet sich im Vakuum bei $x=0,\ z=h$. Der Halbraum $z\leq 0$ ist ideal leitend. Bestimmen Sie die Feldstärke \vec{E} im ganzen Raum, sowie die Flächenladungsdichte σ auf der Leiteroberfläche bei z=0 mit der Spiegelungsmethode. Berechnen Sie die Gesamtladung auf der Leiteroberfläche bezogen auf die Leiterlänge $(\frac{Q}{I})$.

Bestimmen Sie das Potential Φ im ganzen Raum, wobei $\Phi(\infty) = 0$ gelten soll.

Hinweis: Das Potential der Linienladung ohne die gedachte Spiegelladung ist nicht endlich. Mittels unbestimmter Integration kann dieses Problem umgangen werden!

