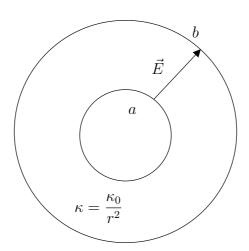
Felder und Wellen

WS 2015/2016

Musterlösung zur 8. Übung

19. Aufgabe



Die Anordnung ist kugelsymmetrisch, deshalb hängt nichts von den Winkeln ab.

a) Ausgangspunkt der Lösung ist die Überlegung, dass der Gesamtstrom durch eine Kugelschale mit Radius $r\ (a < r < b)$ wegen der Ladungserhaltung und aus Symmetriegründen konstant sein muss. Daraus folgt:

$$I=\int \vec{J}d\vec{f}=J_r(r)\,4\pi r^2=\text{konst.}$$

$$\Rightarrow J_r(r)=\frac{I}{4\pi r^2}, \vec{J}(r)=\frac{I}{4\pi r^2}\vec{e_r}$$

b)

$$J_r(r) = \kappa(r)E_r(r) \Rightarrow E_r(r) = \frac{J_r(r)}{\kappa(r)} = \frac{I}{4\pi r^2} \frac{r^2}{\kappa_0} = \frac{I}{4\pi \kappa_0}$$

Aus E_r lässt sich nun U berechnen:

$$\begin{split} U &= -\int_b^a \vec{E} d\vec{s} = -E_r(a-b) = E_r(b-a) \qquad \text{(Da E_r konst.)} \\ &= \frac{I\left(b-a\right)}{4\pi\kappa_0} \end{split}$$

c) Damit kann direkt der Ohmsche Widerstand berechnet werden:

$$R = \left| \frac{U}{I} \right| = \frac{(b-a)}{4\pi\kappa_0}$$

d) Die elektrische Verlustleistung:

$$P = \frac{U^2}{R} = U^2 \frac{4\pi\kappa_0}{(b-a)}$$

Die Stromdichte in abh. von U:

$$J_r = \kappa E_r = \frac{\kappa_0}{r^2} \frac{U}{b-a}$$

Die Raumladungsdichte:

$$\varrho = \varepsilon \operatorname{div} \vec{E} = \varepsilon \frac{1}{r^2} \frac{\partial}{\partial r} r^2 E_r = \frac{2\varepsilon}{r} \frac{U}{b-a}$$

20. Aufgabe

a) Rechnung in Zylinderkoordinaten, wegen der Symmetrie des Problems. Das \vec{H} -Feld kann mit dem Durchflutungsgesetz berechnet werden.

$$\oint \vec{H} \, d\vec{s} = \int \vec{J} \, d\vec{f}$$

Integrationsweg: Kreis um die z-Achse. Das Wegelement in Zylinderkoordinaten ist

$$d\vec{s} = r \, d\varphi \, \vec{e}_{\varphi}$$

Wegen der Symmetrie hängt \vec{H} nur von r ab und zeigt in \vec{e}_{φ} -Richtung

$$\vec{H} = H_{\varphi}(r) \, \vec{e}_{\varphi}$$

$$\int_{0}^{2\pi} H_{\varphi}(r) \, \vec{e}_{\varphi} \cdot \vec{e}_{\varphi} \, r \, d\varphi = \int \vec{J} \, d\vec{f}$$
$$2\pi r \, H_{\varphi}(r) = \int \vec{J} \, d\vec{f}$$

Das Problem wird in 3 Bereiche unterteilt

1.
$$r < a$$

$$2\pi r H_{\varphi}(r) = 0$$
$$\Rightarrow \vec{H} = 0$$

2.
$$a \le r < b$$

$$2\pi r H_{\varphi}(r) = I$$

$$\Rightarrow \vec{H} = \frac{I}{2\pi r} \vec{e}_{\varphi}$$

3.
$$b \le r$$

$$2\pi r H_{\varphi}(r) = 0$$
$$\Rightarrow \vec{H} = 0$$

b) Das Vektorpotential wird mit dem "Coulomb"-Integral berechnet

$$\vec{A} = \frac{\mu}{4\pi} \int \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} dv'$$

 \vec{J} hat nur eine z-Komponente

$$A_z(\vec{r}) = \frac{\mu}{4\pi} \iiint \frac{J_z(\vec{r}')}{|\vec{r} - \vec{r}'|} dv'$$

 \vec{A} wird auf der z-Achse berechnet $\Rightarrow \vec{r} = 0$. Der Strom auf dem inneren Leiter befindet sich im Abstand a von der z-Achse, der Strom auf dem äußeren Leiter im Abstand b.

$$A_z = \frac{\mu I}{4\pi} \left(\int_{-L}^{L} \frac{1}{\sqrt{z^2 + a^2}} dz - \int_{-L}^{L} \frac{1}{\sqrt{z^2 + b^2}} dz \right)$$

Die Integrale werden zuerst von -L bis L berechnet, danach wird der Grenzübergang $L \to \infty$ durchgeführt. Die Funktionen sind symmetrisch in z

$$A_z = \frac{\mu I}{2\pi} \left(\int_0^L \frac{1}{\sqrt{z^2 + a^2}} \, dz + \int_0^L \frac{1}{\sqrt{z^2 + b^2}} \, dz \right)$$

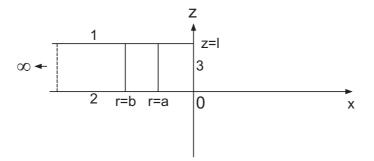
Integration mit Bronstein, Maple oder ausgezeichneten Mathekenntnissen

$$A_z = \frac{\mu I}{2\pi} \left(\left[\ln \left(z + \sqrt{z^2 + a^2} \right) \right]_0^L - \left[\ln \left(z + \sqrt{z^2 + b^2} \right) \right]_0^L \right)$$
$$= \frac{\mu I}{2\pi} \left[\ln \frac{\left(z + \sqrt{z^2 + a^2} \right)}{\left(z + \sqrt{z^2 + b^2} \right)} \right]_0^L$$

Für $L \to \infty$ geht der Logarithmus gegen null.

$$A_z = -\frac{\mu I}{2\pi} \ln \frac{a}{b}$$
$$= \frac{\mu I}{2\pi} \ln \frac{b}{a}$$
$$\vec{A} = \frac{\mu I}{2\pi} \ln \frac{b}{a} \vec{e}_z$$

c) Als Integrationsfläche wird ein Rechteck in der xz-Ebene zwischen z=0 und z=l sowie x=0 und $x=\infty$ gewählt. $\vec{B}=\mu\vec{H}$ existiert nur zwischen x=r=a und x=r=b. \vec{A} muß für $x\to\infty$ verschwinden. Die Stromdichte \vec{J} hat nur eine z-Komponente, deshalb ist \vec{A} orthogonal zu den Wegstücken 1 und 2, die nichts zum



Integral beitragen.

$$\Rightarrow \oint \vec{A} \, d\vec{s} = \int_{0}^{l} A_z \, dz$$
$$= A_z l$$
$$= \frac{\mu I l}{2\pi} \ln \frac{b}{a}$$

 \vec{H} steht senkrecht auf der umschlossenen Fläche und ist in z-Richtung konstant ($\vec{e}_y=\vec{e}_{\varphi}$ in der xz-Ebene)

$$\int \vec{B} \, d\vec{f} = \int \mu H_{\varphi}(r) \, \vec{e}_{\varphi} \, d\vec{f}$$

$$= l \int_{0}^{\infty} \mu H_{\varphi}(r) \, \vec{e}_{\varphi} \cdot \vec{e}_{\varphi} \, dr$$

$$= l \int_{a}^{b} \mu \frac{I}{2\pi r} \, dr$$

$$= \frac{\mu I l}{2\pi} \left[\ln r \right]_{a}^{b}$$

$$= \frac{\mu I l}{2\pi} \ln \frac{b}{a}$$