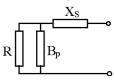
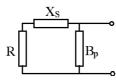
Formelblatt zur Vorlesung 'Grundlagen der Hochfrequenztechnik'

Impedanz $\leftarrow Z=1/Y \rightarrow$ Admittanz

$$\underline{Z} = R + jX$$

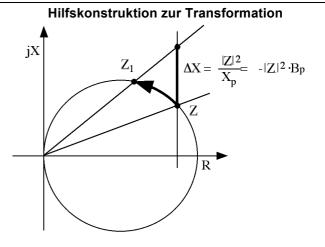

$$\underline{Z} = \frac{G}{C^2 + R^2} - j\frac{B}{C^2 + R^2}$$

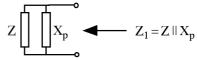

$$\underline{Y} = G + jB$$

$$\underline{Z} = \frac{G}{G^2 + B^2} - j \frac{B}{G^2 + B^2}$$
 $\underline{Y} = \frac{R}{R^2 + X^2} - j \frac{X}{R^2 + X^2}$

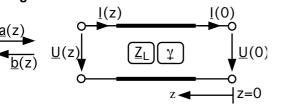
$$\underline{Y} = \frac{R}{R^2 + X^2} - j \frac{X}{R^2 + X^2}$$

Kompensation mit dualen Elementen


Bedingungen für Kompensation:


$$X_s = R^2 \cdot B_p$$

Frequenzfaktor:


$$F(f) = \sqrt{X_s \cdot B_p}$$

krit. Frequenz, Grenzfrequenz: $F(f_k) = 1$

Leitungen

$$\underline{U}(z) = \underline{U}_{H}(0)e^{\underline{\gamma}z} + \underline{U}_{R}(0)e^{-\underline{\gamma}z} = \sqrt{\underline{Z}_{L}}\left(\underline{a}(z) + \underline{b}(z)\right)$$

$$\underline{I}(z) = \frac{\underline{U}_{H}(0)}{\underline{Z}_{L}} e^{\underline{\gamma}z} - \frac{\underline{U}_{R}(0)}{\underline{Z}_{L}} e^{-\underline{\gamma}z} = \frac{1}{\sqrt{\underline{Z}_{L}}} (\underline{a}(z) - \underline{b}(z))$$

$$\underline{\gamma} = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')}; \quad \underline{Z}_L = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$

Koaxialleitung

$$Z_{L} = \frac{1}{2\pi} \cdot \sqrt{\frac{\mu}{\epsilon}} \cdot \ln\left(\frac{\rho_{2}}{\rho_{1}}\right)$$

$$Z_{L} = \frac{1}{2\pi} \cdot \sqrt{\frac{\mu}{\epsilon}} \cdot \ln\left(\frac{\rho_{2}}{\rho_{1}}\right) \qquad \beta = \omega \cdot \sqrt{L'C'} = \omega \cdot \sqrt{\mu\epsilon} \; ; \quad \lambda = \frac{2\pi}{\beta} \; ; \quad C' = \frac{\sqrt{\mu\epsilon}}{Z_{L}} \; ; \quad L' = Z_{L} \cdot \sqrt{\mu\epsilon} \; ; \quad v_{\phi} = \frac{\omega}{\beta}$$

schwach gedämpfte Leitungen (R $^{\prime}<<\omega L^{\prime}$; $\overline{G^{\prime}<<\omega C^{\prime}}$)

$$\alpha \approx \frac{1}{2} \left(\frac{R'}{Z_{\rm L}} + G' \cdot Z_{\rm L} \right) \; ; \quad G' = \omega C' \cdot \tan(\delta_{\rm c}) \; ; \quad R' \sim \frac{1}{\kappa \cdot s}$$

Dämpfung einer Leitung der Länge | (für hinlaufende Welle a)

$$D/dB = 10 \cdot log \left(\frac{P_a(\ell)}{P_a(0)}\right) = 10 \cdot log(e^{2\alpha\ell})$$

Eindringtiefe s

$$S = \sqrt{\frac{2}{\omega \kappa \mu}}$$

$$\underline{\mathbf{r}}(\mathbf{z}) = \frac{\underline{\mathbf{U}}_{R}(\mathbf{z})}{\underline{\mathbf{U}}_{H}(\mathbf{z})} = \frac{\underline{\mathbf{b}}(\mathbf{z})}{\underline{\mathbf{a}}(\mathbf{z})} = \frac{\underline{\mathbf{b}}(\mathbf{0})}{\underline{\mathbf{a}}(\mathbf{0})} \cdot \mathbf{e}^{-2\underline{\gamma}\mathbf{z}}$$

Reflexionsfaktor → Impedanz

$$\underline{r}(z) = \frac{\underline{U}_{R}(z)}{\underline{U}_{H}(z)} = \frac{\underline{b}(z)}{\underline{a}(z)} = \frac{\underline{b}(0)}{\underline{a}(0)} \cdot e^{-2\underline{\gamma}z} \qquad \underline{\underline{r}}(\ell) = \frac{\underline{Z}(\ell) - \underline{Z}_{L}}{\underline{Z}(\ell) + \underline{Z}_{L}} \; ; \quad \underline{Z}(\ell) = \frac{\underline{U}(\ell)}{\underline{I}(\ell)} = \frac{1 + \underline{r}(\ell)}{1 - \underline{r}(\ell)} \cdot \underline{Z}_{L}$$

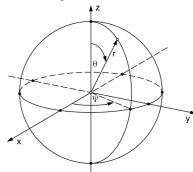
Anpassungsfaktor,

$$m = \frac{1}{VSWR} = \frac{1 - |\underline{r}|}{1 + |\underline{r}|} = \frac{U_{min}}{U_{max}}$$
 mit: $\underline{a}(z) = \frac{\underline{U}_{H}(z)}{\sqrt{Z_{L}}} = \sqrt{\underline{Z}_{L}} \cdot \underline{I}_{H}(z)$

Dem Verbraucher zuge

mit:
$$\underline{a}(z) = \frac{\underline{U}_{H}(z)}{\sqrt{\underline{Z}_{L}}} = \sqrt{\underline{Z}_{L}} \cdot \underline{I}_{H}(z)$$

$$P_{w} = P_{a}(0) - P_{b}(0) = \frac{1}{2} \left(\left| \underline{a}(0) \right|^{2} - \left| \underline{b}(0) \right|^{2} \right)$$


$$= \frac{1}{2} \left| \underline{a}(0) \right|^2 \cdot \left(1 - \left| \underline{r}(0) \right|^2 \right)$$

Transformation durch Kettenschaltung einer Leitung

$$\underline{Z}(\ell) = \underline{Z}_{L} \cdot \frac{\underline{Z}(0) + \underline{Z}_{L} \tanh(\underline{\gamma}\ell)}{\underline{Z}_{L} + \underline{Z}(0) \tanh(\underline{\gamma}\ell)} = \underline{Z}(0) \cdot \frac{1 + j \frac{Z_{L}}{\underline{Z}(0)} \cdot \tan(\beta\ell)}{1 + j \frac{\overline{Z}(0)}{Z_{L}} \cdot \tan(\beta\ell)} \Big|_{\alpha = 0}$$

Konstanten

Kugelkoordinaten

Azimuth: Ψ Elevation: θ Volumen: $V = \frac{4}{3}\pi r^3$ Oberfläche: $F = 4\pi r^2$

Dieses Doppelblatt wird Ihnen zur Prüfung als einziges Hilfsmittel ausgeteilt. Versuchen Sie deshalb zumindest in der Endphase der Prüfungsvorbereitung, alle Aufgaben ohne weitere Hilfen zu lösen!

Umrechnung verschiedener Zweitorparameter

E	$\frac{T_{12}}{T_{22}}$	$\frac{111122 - 112121}{T_{22}}$	$rac{1}{7_{22}}$	$\frac{-1_{21}}{T_{22}}$													T ₁₁	T ₁₂	T ₂₁	T ₂₂
[A] (ABCD)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A + B/Z_0 + CZ_0 + D$	$\frac{2}{A + B/Z_0 + CZ_0 + D}$	$-A + B/Z_0 - CZ_0 + D$ $A + B/Z_0 + CZ_0 + D$	∢ ∪	AD – BC C	U U	O D	Ω Ω	BC – AD B	-1 B	∀ ⊠	Ą	В	U	۵				
[γ]	$\frac{(Y_0 - Y_{11})(Y_0 + Y_{22}) + Y_{12}Y_{21}}{(Y_{11} + Y_0)(Y_{22} + Y_0) - Y_{12}Y_{21}}$	$\frac{-X_{112}Y_0}{(Y_{11} + Y_0)(Y_{22} + Y_0) - Y_{12}Y_{21}}$	$\frac{-2Y_{21}Y_0}{(Y_{11} + Y_0)(Y_{22} + Y_0) - Y_{12}Y_{21}}$	$\frac{(Y_0 + Y_{11})(Y_0 - Y_{22}) + Y_{12}Y_{21}}{(Y_{11} + Y_0)(Y_{22} + Y_0) - Y_{12}Y_{21}}$	$\frac{\gamma_{22}}{\gamma_{11}\gamma_{22}-\gamma_{12}\gamma_{21}}$	$\frac{-Y_{12}}{Y_{11}Y_{22}-Y_{12}Y_{21}}$	$-Y_{21}$ $\overline{Y_{11}Y_{22}-Y_{12}Y_{21}}$	$\frac{Y_{11}}{Y_{11}Y_{22}-Y_{12}Y_{21}}$	Y ₁₁	۲ ₁₂	Y ₂₁	۲22	$\frac{-Y_{22}}{Y_{21}}$	-1	$\frac{Y_{12}Y_{21}-Y_{11}Y_{22}}{V_{-1}}$	$\frac{-Y_{11}}{Y_{21}}$				
[Z]	$\frac{(Z_{11} - Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21}}{(Z_{11} + Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21}}$	$\frac{2Z_{12}Z_0}{(Z_{11} + Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21}}$		$(Z_{11} + Z_0)(Z_{22} - Z_0) - Z_{12}Z_{21}$ $(Z_{11} + Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21}$	Z ₁₁	Z ₁₂	Z ₂₁	Z ₂₂	$\frac{Z_{22}}{Z_{11}Z_{22}-Z_{12}Z_{21}}$	$\frac{-Z_{12}}{Z_{11}Z_{22}-Z_{12}Z_{21}}$	$\frac{-Z_{21}}{Z_{11}Z_{22}-Z_{12}Z_{21}}$	$\frac{Z_{11}}{Z_{11}Z_{22}-Z_{12}Z_{21}}$	$\frac{Z_{11}}{Z_{21}}$	$\frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}}$	$\frac{1}{2}$	$\frac{221}{222}$				
[5]	511	5 ₁₂	521	522	$Z_0 \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{(1-S_{11})(1-S_{22})-S_{12}S_{21}}$	$Z_0 \frac{25_{12}}{(1-5_{11})(1-5_{22})-5_{12}5_{21}}$	$Z_0 \frac{2S_{21}}{(1-S_{11})(1-S_{22})-S_{12}S_{21}}$	$Z_0 \frac{(1-S_{11})(1+S_{22})+S_{12}S_{21}}{(1-S_{11})(1-S_{22})-S_{12}S_{21}}$		${}^{Y_0}\frac{-2S_{12}}{(1+S_{11})(1+S_{22})-S_{12}S_{21}}$	${}^{Y_0}\frac{-2S_{21}}{(1+S_{11})(1+S_{22})-S_{12}S_{21}}$	$\gamma_0 \frac{(1+5_{11})(1-5_{22})+5_{12}5_{21}}{(1+5_{11})(1+5_{22})-5_{12}5_{21}}$	$\frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}}$	$Z_0 = \frac{(1+S_{11})(1+S_{22})-S_{12}S_{21}}{2S_{21}}$	$\frac{1}{2} \frac{(1-S_{11})(1-S_{22})-S_{12}S_{21}}{2}$	$(1 - S_{11})(1 + S_{12})$	$\frac{S_{12}S_{21} - S_{11}S_{22}}{S_{21}}$	$\frac{S_{11}}{S_{21}}$	$\frac{-5_{22}}{5_{21}}$	$\frac{1}{5_{21}}$
	511	512	521	S ₂₂	Z ₁₁	Z ₁₂	Z ₂₁	Z ₂₂	Y ₁₁	Y ₁₂	Y ₂₁	Y ₂₂	⋖	В	U	۵	T ₁₁	T ₁₂	T ₂₁	T ₂₂