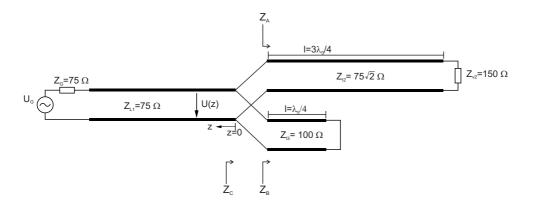


Grundlagen der Hochfrequenztechnik

2. Tutorium (Stehende Wellen)

Aufgabe 1

Gegeben sei folgende Schaltung, in der ein Generator mit dem Innenwiderstand $R_i = Z_L$, der Leerlaufspannung U_G und mit der Frequenz $f_0 = 2,122$ GHz eine kapazitive Last über eine verlustlose Luftleitung ($\epsilon_r = 1$) mit dem Wellenwiderstand Z_L speist. Als Last dient eine Kapazität mit dem Wert $C_v = 1$ pF.



a)

- Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Leitung der Länge L in das dafür vorgesehene Diagramm ein.
- Wie groß ist |U(z)| über C_v ?
- Für welche $\frac{z}{\lambda}$ gilt |U(z)| = 0?

b)

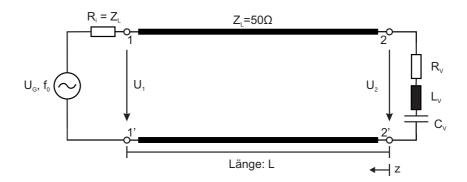
Welche Elemente müssen sie zusätzlich einfügen, um Anpassung an die Leitung zu erzeugen? Dimensionieren sie diese für f_0 .

c)

Gegeben sei obige Schaltung. Der Generator speist die Schaltung bei der Frequenz f_0 . Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Messleitung (L_1) für $z \geq 0$ in das dafür vorgesehene Diagramm ein. Beschriften Sie die Achsen des Diagramms!

d)

In der Schaltung aus Aufgabenteil c wird nun die Generatorfrequenz f auf $f = 2f_0$ verdoppelt.

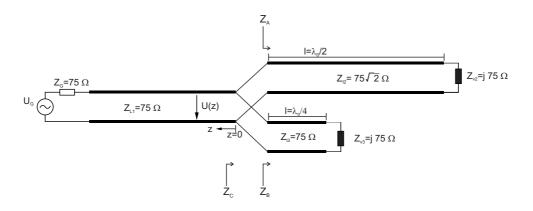

Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Messleitung (L_1) für $z \ge 0$ in das dafür vorgesehene Diagramm ein. Beschriften Sie die Achsen des Diagramms!

e)

Die Generatorspannung sei nun $U_G = 3 \text{ V} \sin(2\pi f t)$. Wie viel Leistung in Watt wird sowohl bei $f = f_0$ (Aufgabenteil c) als auch bei der doppelten Frequenz (Aufgabenteil d) im Widerstand Z_{v2} verbraucht?

Aufgabe 2

Gegeben sei folgende Schaltung, in der ein Generator mit dem Innenwiderstand $R_i = Z_L$, der Leerlaufspannung U_G und mit der Frequenz $f_0 = 951,1$ MHz eine komplexe Last über eine verlustlose Luftleitung ($\epsilon_r = 1$) mit dem Wellenwiderstand Z_L speist. Die Bauteilwerte sind: $C_v = 4$ pF, $L_v = 7$ nH, $R_v = 100$ Ω .



a)

- Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Leitung der Länge L in das dafür vorgesehene Diagramm ein.
- Wie groß ist |U(z)|?
- Für welche $\frac{z}{\lambda}$ gilt |U(z)| = 0?

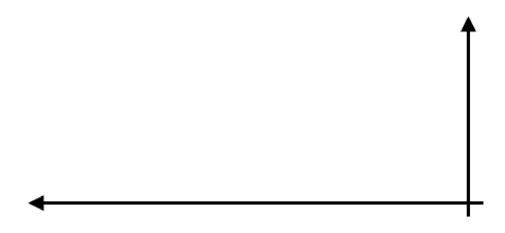
b)

Welches Element bzw. welche Elemente müssen sie zusätzlich einfügen, um Anpassung an die Leitung zu erzeugen? Dimensionieren sie diese für f_0 und begründen Sie Ihre Wahl.

c)

Gegeben sei obige Schaltung. Der Generator speist die Schaltung bei der Frequenz f_0 . Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Messleitung (L_1) für $z \geq 0$ in das dafür vorgesehene Diagramm ein. Beschriften Sie die Achsen des Diagramms!

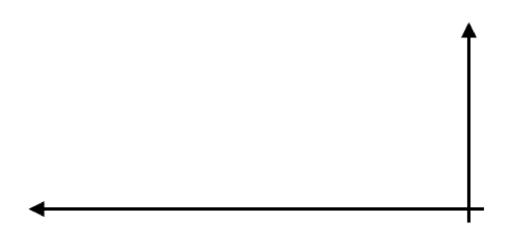
d)


In der Schaltung aus Aufgabenteil c wird nun die Induktivität Z_{v3} durch einen Kurzschluss ersetzt.

Zeichnen Sie die Verteilung des Betrages |U(z)| (Einhüllende) der komplexen Spannungsamplitude U(z) auf der Messleitung (L_1) für $z \ge 0$ in das dafür vorgesehene Diagramm ein. Beschriften Sie die Achsen des Diagramms!

zu Aufgabe 1a)

zu Aufgabe 1c)


zu Aufgabe 1d)

zu Aufgabe 2a)

zu Aufgabe 2c)

zu Aufgabe 2d)

