WS 2013/2014 Ausgabe am: 16.12.2013

Übungsblatt 8

Aufgabe 1) Diffusionskapazität

Betrachten Sie eine p⁺n-Diode (Fläche $A=10^4~\mu m^2$) aus Silizium, bei der die Dotierung im n-Gebiet $n_{\rm D}=2,5\cdot 10^{16}~{\rm cm}^{-3}~{\rm beträgt}$. Die Länge des n-Gebiets ist deutlich größer als die Diffusionslänge $L_{\rm p}\approx 100~\mu m~{\rm für}$ Löcher in diesem Gebiet, so dass der Einfluss des Kontakts auf den für eine Flussspannung U>0 injizierten Löcherstrom vernachlässigt werden kann.

- a) Berechnen Sie die Diffusionskapazität C_D .
- b) Welche Überschusslöcherladung Q wird bei U = 700mV und T = 300K in der Diffusionszone des n-Gebietes gespeichert? Wie hängt diese von der Diffusionslänge L_p ab?
- c) Berechnen Sie die Änderung ΔQ der in der Diffusionszone gespeicherten Ladung Q, wenn die angelegte statische Spannung um einen Betrag ΔU geändert wird.
- d) Vergleichen Sie das Verhältnis $\Delta Q / \Delta U$ mit der in a) berechneten Diffusionskapazität. Für eine gegebene Spannungsänderung ΔU ist die Änderung ΔQ der in der Diffusionszone gespeicherten Minoritätsträgerladungen offensichtlich doppelt so groß wie der im äußeren Stromkreis messbare Ladungstransport, der durch die Diffusionskapazität C_D beschrieben wird. Auf welchem Weg verschwindet die andere Hälfte der Löcher aus der Diffusionszone?

Aufgabe 2) Ersatzschaltbild

Eine pn-Diode wird wie abgebildet betrieben. Die Spannung an der Diode im Arbeitspunkt beträgt $U=0.7\,\mathrm{V}$.

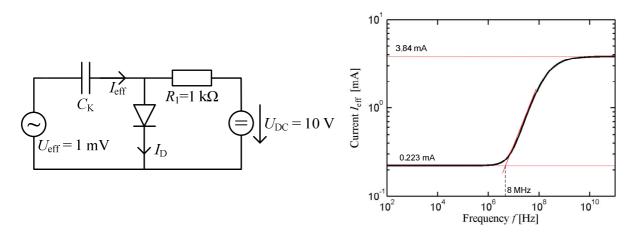


Fig. 1: Diode mit äußerer Beschaltung (links), Frequenzgang des Gesamtstroms (rechts). Die Frequenz, bei welcher der Strom um einen Faktor $\sqrt{2}$ angestiegen ist, liegt bei 8 MHz.

- a) Zeichnen Sie die zugehörige Kleinsignal-Ersatzschaltung. Behandeln Sie die Kapazität $C_{\rm K}$ für alle betrachteten Frequenzen als Kurzschluss. Berücksichtigen Sie dabei den Bahnwiderstand R_b der Diode und fassen Sie die Sperrschichtkapazität und die Diffusionskapazität zu einer Gesamtkapazität $C_{\rm g}$ zusammen.
- b) Bestimmen Sie die Elemente der Kleinsignal-Ersatzschaltung der Diode (Bahnwiderstand, Kleinsignal-Leitwert, Gesamtkapazität) mit Hilfe des Rechts skizzierten Frequenzganges des Gesamtstroms aus der Wechselspannungsquelle $I_{\rm eff}$. Nutzen Sie dabei die Tatsache, dass der Bahnwiderstand sehr klein ist im Vergleich zu den anderen Widerständen ist.

Bitte wenden!

WS 2013/2014

Ausgabe am: 16.12.2013

Aufgabe 3) Zenerdiode

Bei einseitig abrupt dotierten pn-Übergängen in Silizium ($n_i = 1.5 \cdot 10^{10} \, \mathrm{cm}^{-3}$, $\varepsilon_r = 12$) kommt es typischerweise bei Feldstärken von ca. $5 \cdot 10^5 \, \mathrm{V/cm}$ zu einem Zenerdurchbruch. Im Folgenden soll ein p-n-Übergang in Silizium betrachtet werden mit den Dotierungsdichten $n_{\mathrm{A}} = 10^{18} \, \mathrm{cm}^{-3}$, $n_{\mathrm{D}} = 2 \cdot 10^{17} \, \mathrm{cm}^{-3}$.

- a) Berechnen Sie die Durchbruchspannung des Bauteils.
- b) Kommt es bei dieser Spannung tatsächlich zu einem Zenerdurchbruch und nicht zu einem Lawinendurchbruch? Begründen Sie Ihre Antwort mit Fig. 2.

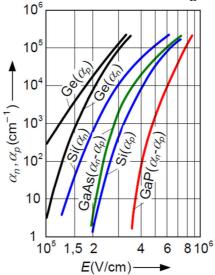


Fig. 2: Gemessene Ionisationskoeffizienten für Lawinenmultiplikation als Funktion der Feldstärke. (aus Müller, R.: Grundlagen der Halbleiter-Elektronik, Springer, 1984)

Ein fröhliches Weihnachtsfest wünscht das HLB-Team!

Die nächsten Termine:

7. Januar 2014: Erstes Tutorium im neuen Jahr 10. Januar 2014: Erste Übung im neuen Jahr 13. Januar 2014: Erste Vorlesung im neuen Jahr