WS 2014/2015 Ausgabe am: 19.12.2014

Übungsblatt 9

Aufgabe 1) p-i-n-Diode

Eine p-i-n-Fotodiode besteht aus einem $w_i = 10 \, \mu m$ langen undotierten Gebiet, das sich zwischen einem p- und n-Gebiet von jeweils 500 nm Länge befindet, siehe Figur 1. Die Dotierstoffkonzentrationen im p- und n-Gebiet sind $n_D = n_A = 5 \times 10^{16} \, \text{cm}^{-3}$. Die Metallkontakte an beiden Seiten sind ohmsche Kontakte und über den Außenkreis leitend miteinander verbunden. Die Eigenleitungsträgerdichte ist $n_i = 1,5 \times 10^{10} \, \text{cm}^{-3}$ und es gilt Störstellenerschöpfung.

Der Einfluss der Metallkontakte ist vernachlässigbar. Für die RLZ in den dotierten Bereichen kann die Schottky-Näherung angenommen werden. Die Dielektrizitätskonstante des Halbleiters ist ε_r = 12, und der Betrieb sei bei Raumtemperatur T = 300 K.

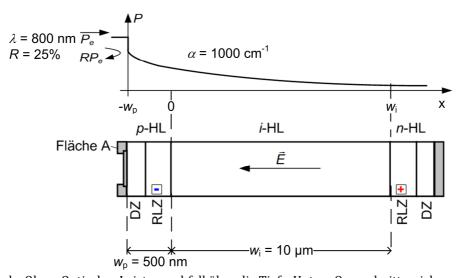


Fig 1: p-i-n-Diode. Oben: Optischer Leistungsabfall über die Tiefe. Unten: Querschnittszeichnung der p-i-n-Diode.

- a) Wie groß ist die Diffusionsspannung zwischen n- und p- Gebiet?
- b) Leiten Sie einen formalen Ausdruck für den Verlauf des elektrischen Feldes über der Ortskoordinate x (x = 0 sei am p-i-Übergang) her. Verwenden Sie dabei die zunächst noch unbekannten Parameter l_n und l_p für die Ausdehnungen der Raumladungszone im n- und p-Bereich. Skizzieren Sie den Verlauf des elektrischen Feldes als Funktion des Ortes x.
- c) Berechnen Sie die Ausdehnungen l_n und l_p der beiden Raumladungszonen in die dotierten Bereiche? Wie groß ist die maximal auftretenden Feldstärke E_{max} ?
- d) Welcher Vorteil ergibt sich für die p-i-n-Diode als Fotodiode gegenüber einer p-n-Diode ohne i-Schicht?
- In der undotierten Zone werden durch Lichteinstrahlung ($P=100~\mu\mathrm{W},~\lambda=800~\mathrm{nm}$) Ladungsträgerpaare erzeugt, so dass sich ein stationärer Strom einstellt. Der Absorptionskoeffizient der Materials beträgt $\alpha=1000~\mathrm{cm}^{-1}$.
- e) Berechnen Sie den Quantenwirkungsgrad η und die Empfindlichkeit (Responsivity) \mathcal{R} der Fotodiode. Welcher Strom stellt sich bei einer einfallenden Leistung von 100 μ W ein?

Aufgabe 2) Varaktordiode

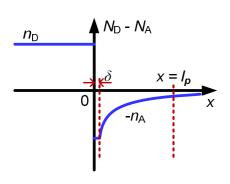


Fig. 2: Dotierprofil der Varaktor Diode

$$N_{D} - N_{A} = \begin{cases} n_{D} & x < 0 \\ -K \cdot \delta^{-3/2} & 0 \le x \le \delta \\ -K \cdot x^{-3/2} & \delta < x \end{cases}$$

Eine in Sperrrichtung gepolte n⁺p-Siliziumdiode wird als variable Kapazität in einer HF-Schaltung eingesetzt. Die Raumladungszone im p-dotierten Gebiet erstreckt sich bis zu $x=l_p$, wobei $l=l_n+l_p$ die Länge der gesamten Raumladungszone bezeichnet. Die Länge l_n RLZ im n⁺-Gebiet sei wegen $n_A\gg n_D$

vernachlässigbar klein und es gilt $l pprox l_{_p} \gg \delta$.

- a) Bestimmen Sie die ortsabhängige Feldstärke E(x) im Bereich $\delta < x \le l$. Nutzen Sie dabei die Tatsache, dass das E-Feld außerhalb der Raumladungszone verschwindet, d.h. E(x) = 0 für x > l.
- b) Bestimmen Sie das ortsabhängige elektrische Potential $\varphi(x)$ im Bereich $\delta < x \le l$. Es soll $\lim_{\delta \to 0} \varphi(\delta) = 0$ gelten. Zeigen Sie, dass für das Potential $\varphi(l)$ am rechten Rand folgende Beziehung gilt:

$$\varphi(l) = -\frac{2eK}{\varepsilon_0 \varepsilon_r} \sqrt{l}$$

- c) Das Potential am rechten Rand der Raumladungszone entspricht der Differenz zwischen der angelegten Spannung U und der Diffusionsspannung U_D , $-\varphi(l) = U_D U$. Berechnen Sie daraus die Sperrschichtkapazität $C_s = \varepsilon_0 \varepsilon_r \frac{A}{l}$ in Abhängigkeit von $U_D U$.
- d) Berechnen Sie die Resonanzfrequenz eines Reihenschwingkreis bestehend aus einer Induktivität L und einer in Sperrrichtung vorgespannten Varaktordiode mit der Sperrschichtkapazität C_s in Abhängigkeit von $U_D U$.

Ein fröhliches Weihnachtsfest wünscht das HLB-Team!

Die nächsten Termine:

9. Januar 2015: Erste Vorlesung im neuen Jahr
13. Januar 2015: Erstes Tutorium im neuen Jahr
16. Januar 2015: Erste Übung im neuen Jahr