
WS 2014/2015 Ausgabe am: 12.01.2015

Übungsblatt 10

Aufgabe 1) p-n-Laserdiode

Eine p-n-Laserdiode sei als Heterostruktur aufgebaut, d.h. auf der p- und n-Seite werden Materialien mit unterschiedlichen Bandabständen verwendet. Die p-Seite besteht aus GaAs mit einem Bandabstand $W_{\rm G1}=1,4\,{\rm eV}$, $\varepsilon_r=12.9\,$ und ist mit einer Akzeptordichte

 $n_{\!\scriptscriptstyle A}\!=\!1\cdot 10^{17}~{\rm cm}^{-3}$ dotiert. Die n-Seite besteht aus AlGaAs mit $W_{\!\scriptscriptstyle G2}\!=\!1,8\,{\rm eV}$, $\varepsilon_{\!\scriptscriptstyle r}=11,5\,{\rm und}$ ist mit einer Donatordichte $n_{\!\scriptscriptstyle D}\!=\!10^{16}~{\rm cm}^{-3}\,$ dotiert. Im sogenannten Flachbandfall wird eine äußere Spannung so angelegt, dass die Bänder am Übergang nicht verbogen sind, siehe Figur 1.

Figur 1

Die Leitungsbandkante erfährt am abrupten Übergang einen Sprung $\Delta W_L = 0,26$ eV, die Valenzbandkante einen Sprung $\Delta W_V = 0,14$ eV . Die Temperatur beträgt $T = 300\,\mathrm{K}$. Die p- und n-Seite haben die gleichen äquivalenten Zustandsdichten. Die Eigenleitungsträgerdichte in GaAs sei $n_i = 1.8 \cdot 10^6$ cm⁻³ . Es gilt Störstellenerschöpfung.

- a) Skizzieren Sie unter Angabe der entsprechenden Gleichungen die Verläufe der Raumladungsdichte $\rho(x)$, des elektrischen Feldes E(x), des Potentials $\varphi(x)$ und die Bandverläufe $W_{L,V}(x)$ für den Fall, dass keine äußere Spannung angelegt ist. Es gelte die Schottky-Näherung. Beachten Sie beim Skizzieren des elektrischen Feldes die Randbedingung an der Materialgrenzfläche.
- b) Betrachten Sie nun den Flachbandfall und skizzieren Sie den Verlauf der Quasi-Ferminiveaus im p-n-Übergang. Markieren Sie die Raumladungs- und Diffusionsgebiete. Welche Spannung muss an die Diode angelegt werden, damit es zum Flachbandfall kommt? Wo muss der "+"-Pol der Spannung angelegt werden? Liegt in diesem Fall optischer Gewinn vor?
- c) Berechnen Sie die maximale Feldstärke E_{max} in der Diode, wenn keine äußere Spannung angelegt ist. Beachten Sie dabei, dass die in b) berechnete "Flachbandspannung" gerade der Diffusionsspannung der Diode entspricht.
- d) Technische Realisierungen von Halbleiterlasern beruhen fast ausschließlich auf Doppel-Heterostrukturen. Skizzieren Sie qualitativ den Bandverlauf einer Doppel-Heterostruktur im Flachbandfall und erläutern Sie die Vorteile gegenüber einer einfachen Heterostruktur.

Aufgabe 2) Ersatzschaltbild einer pn-Diode

Eine p-n-Diode wird wie abgebildet betrieben. An der Diode fällt die Spannung U_D ab; der Gleichanteil der Spannung beträgt $U_{D,0}=0,7~\mathrm{V}$.

WS 2014/2015 Ausgabe am: 12.01.2015

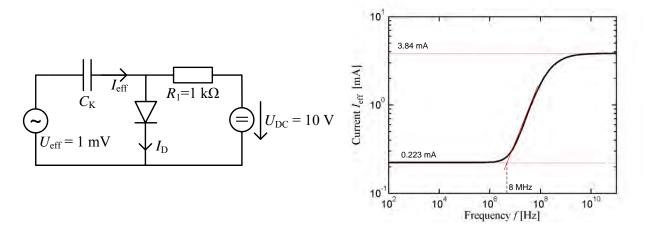


Fig. 1: Diode mit äußerer Beschaltung (links), Frequenzgang des Gesamtstroms (rechts). Die Frequenz, bei welcher der Strom um einen Faktor $\sqrt{2}$ angestiegen ist, liegt bei 8 MHz.

- a) Zeichnen Sie die zugehörige Kleinsignal-Ersatzschaltung. Berücksichtigen Sie dabei den Bahnwiderstand R_b der Diode und fassen Sie die Sperrschichtkapazität und die Diffusionskapazität zu einer Gesamtkapazität $C_{\rm g}$ zusammen. Behandeln Sie die Kapazität $C_{\rm g}$ für alle betrachteten Frequenzen als Kurzschluss.
- b) Bestimmen Sie die Elemente der Kleinsignal-Ersatzschaltung der Diode (Bahnwiderstand, Kleinsignal-Leitwert, Gesamtkapazität) mit Hilfe des rechts skizzierten Frequenzganges des Effektivwerts $I_{\rm eff}$ des Kleinsignal-Wechselstroms. Nutzen Sie dabei die Tatsache, dass der Bahnwiderstand der Diode sehr klein ist im Vergleich zu den anderen Widerständen.