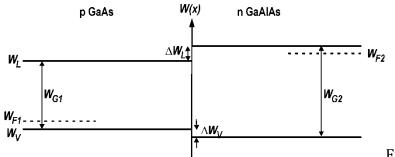
Übungsblatt 10

Aufgabe 1) p-n-Laserdiode

Eine p-n-Laserdiode sei als Heterostruktur aufgebaut, d.h. auf der p- und n-Seite werden Materialien mit unterschiedlichen Bandabständen verwendet. Die p-Seite besteht aus GaAs mit einem Bandabstand $W_{G1}\!=\!1,4\,\mathrm{eV}$, $\varepsilon_r=12.9$ und ist mit einer Akzeptordichte $n_A\!=\!1\cdot10^{17}\,\mathrm{cm}^{-3}$ dotiert. Die n-Seite besteht aus GaAlAs mit $W_{G2}\!=\!1,8\,\mathrm{eV}$, $\varepsilon_r=11,5$ und ist mit einer Donatordichte $n_D\!=\!10^{16}\,\mathrm{cm}^{-3}$ dotiert. Im sogenannten Flachbandfall wird eine äußere Spannung so angelegt, dass die Bänder am Übergang nicht verbogen sind, siehe Figur 1.



Figur 1

Die Leitungsbandkante erfährt am abrupten Übergang einen Sprung $\Delta W_L = 0,26$ eV, die Valenzbandkante einen Sprung $\Delta W_V = 0,14$ eV. Die Temperatur beträgt T = 300 K. Die p- und n-Seite haben die gleichen äquivalenten Zustandsdichten. Die Eigenleitungsträgerdichte in GaAs sei $n_i = 1.8 \cdot 10^6$ cm⁻³. Es gilt Störstellenerschöpfung.

a) Skizzieren Sie unter Angabe der entsprechenden Gleichungen die Verläufe der Raumladungsdichte $\rho(x)$, des elektrischen Feldes E(x), des Potentials $\varphi(x)$ und die Bandverläufe $W_{L,V}(x)$ für den Fall, dass keine äußere Spannung angelegt ist. Es gelte die Schottky-Näherung. Beachten Sie beim Skizzieren des elektrischen Feldes die Randbedingung an der Materialgrenzfläche.

Lösung:

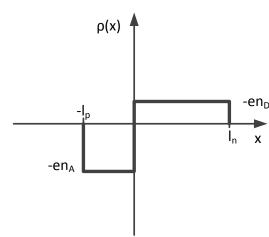
Ges.: Skizze für $\rho(x)$, E(x), $\varphi(x)$ und das Banddiagramm $W_{L,V}(x)$

1) Raumladungsdichten $\rho(x)$:

$$\rho(x) = e[n_{D} - n(x) - n_{A} + p(x)]$$

mit der Schottky Näherung n(x) = p(x) = 0 folgt

$$\rho(x) = \begin{cases} -en_A & -l_p < x < 0 \\ en_D & \text{für} & 0 < x < l_n \\ 0 & \text{sonst} \end{cases}$$



WS 2014/2015

Ausgabe am: 12.01.2015

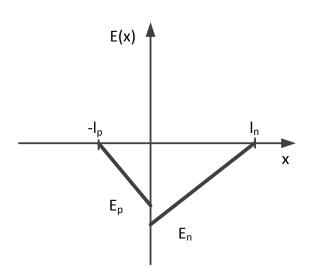
2) Feldstärke E(x):

$$div \vec{D} = \rho \rightarrow \frac{d(\varepsilon E)}{dx} = \rho$$

bzw.
$$\varepsilon E = \int \rho dx$$

Die auf p- und n-Seite verschiedenen ε ergeben an der Stelle x = 0 einen Sprung im E-Feld:

$$\varepsilon_p E_p = \varepsilon_n E_n \longrightarrow E_n = \frac{\varepsilon_p}{\varepsilon_n} E_p$$

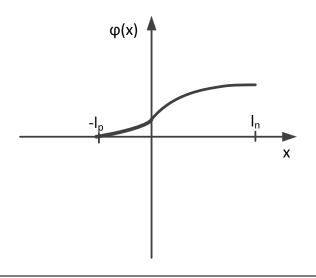


3) **Potential** $\varphi(x)$: Der Verlauf folgt

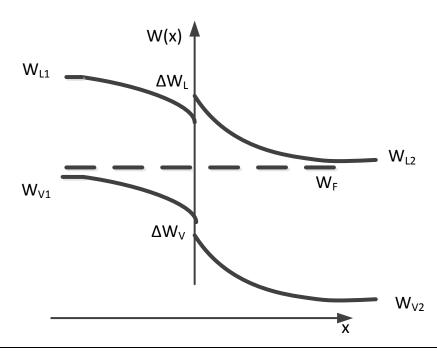
mit
$$\vec{E} = -grad \varphi \implies \frac{d\varphi}{dx} = -E$$

bzw.
$$\varphi = -\int E dx$$

Achtung: Die Steigung von φ ändert sich bei x = 0.



4) Das **Banddiagramm** W(x) sieht folgendermaßen aus: $W(x) = W - e\varphi(x)$

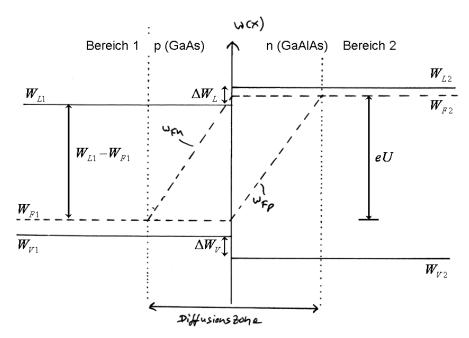


b) Betrachten Sie nun den Flachbandfall und skizzieren Sie den Verlauf der Quasi-Ferminiveaus im p-n-Übergang. Markieren Sie die Raumladungs- und Diffusionsgebiete. Welche Spannung muss an die Diode angelegt werden, damit es zum Flachbandfall kommt? Wo muss der "+"-Pol der Spannung angelegt werden? Liegt in diesem Fall optischer Gewinn vor?

Ges.: Skizze für Quasi-Ferminiveaus, die Raumladungs- und Diffusionsgebiete

Lösung:

Es gibt im Flachbandfall (ideal) keine Raumladungszonen: Die in der Aufgabenstellung gegebenen Quasi-Ferminiveaus lassen sich nur auf die folgende Art miteinander verbinden (gestrichelt):



Um den Flachbandfall zu erreichen, muss die Diffusionsspannung ausgeglichen werden. Diese ist durch die Differenz der Fermi-Niveaus im p- und n-Halbleiter gegeben, welche sich aus dem Diagramm ablesen lässt: $eU=W_{F2}-W_{F1}$

1) Zur Berechnung der Spannung wird $eU = W_{F2} - W_{F1}$ separiert in Differenzen für die Bereiche 1 und 2, in denen die Besetzungskonzentrationen für p (Bereich 1) und n (Bereich 2) bekannt sind.

$$W_{L1} - W_{F1} + \Delta W_L = W_{L2} - W_{F2} + eU \quad \rightarrow \quad U = \frac{W_{L1} - W_{F1} + \Delta W_L - (W_{L2} - W_{F2})}{e}$$

2) Für den p-HL (Bereich 1) mit $W_{L1}-W_{F1}=W_{G1}-(W_{F1}-W_{V1})$ gilt die Verteilung:

$$p = n_A = N_{V1} \exp\left(-\frac{W_{F1} - W_{V1}}{kT}\right) \implies W_{L1} - W_{F1} = W_{G1} - (W_{F1} - W_{V1}) = W_{G1} + kT \ln\left(\frac{n_A}{N_{V1}}\right)$$

3) Für den n-HL (Bereich 2) mit $W_{L2} - W_{F2}$ gilt die Verteilung:

$$n = n_D = N_{L2} \exp\left(-\frac{W_{L2} - W_{F2}}{kT}\right) \implies W_{L2} - W_{F2} = -kT \ln\left(\frac{n_D}{N_{L2}}\right)$$

Einsetzen dieser Differenzen in die Ausgangsgleichung unter 1) ergibt:

$$U = \frac{W_{G1} + kT\ln\left(\frac{n_A}{N_{V1}}\right) + \Delta W_L + kT\ln\left(\frac{n_D}{N_{L2}}\right)}{e} = \frac{\Delta W_L + W_{G1} + kT\ln\left(\frac{n_A n_D}{N_{V1} N_{L2}}\right)}{e}$$

Gemäß $N_{L1}=N_{L2}$ und $N_{V1}=N_{V2}$, für deren Produkt gilt:

$$N_V \cdot N_L = n_{i,1}^2 \exp(W_{G1}/kT) \qquad \Rightarrow U = \frac{\Delta W_L + kT \ln\left(\frac{n_A n_D}{n_i^2}\right)}{e} = 1.48 V$$

Optischer Gewinn liegt vor, wenn die Separation der Quasi-Ferminiveaus größer als der Bandabstand ist und wenn mindestens ein Quasi-Ferminiveau im Band liegt.

Für den p-Halbleiter liegt das Quasi-Ferminiveau für Elektronen am Rande des pn-Übergangs im Leitungsband. Die Separation der Quasi-Ferminiveaus ist dort größer als der Bandabstand $W_{\rm GI}=1.4~{\rm eV}<1.48~{\rm eV}$, so dass optischer Gewinn vorliegt.

c) Berechnen Sie die maximale Feldstärke E_{max} in der Diode, wenn keine äußere Spannung angelegt ist. Beachten Sie dabei, dass die in b) berechnete "Flachbandspannung" gerade der Diffusionsspannung der Diode entspricht.

Ges.: E_{max} , für U = 0 V.

Lösung:

1) Das *E*-Feld springt bei
$$x = 0$$
 um $\varepsilon_p E_p = \varepsilon_n E_n$, $E_p = \frac{\varepsilon_n}{\varepsilon_p} E_n$

2) Mit den Zeichnungen und Gleichungen aus **a**) folgt: $E_p = -e n_A l_p / \varepsilon_p$ und $E_n = -e n_D l_n / \varepsilon_0 \varepsilon_{nn}$

(Flächeninhalte der Rechtecke in der $\rho(x)$ -Verteilung).

3) Für das Potential gilt allgemein: $\varphi = -\int E dx$: $\varphi_{ges} = -\frac{1}{2} E_p l_p - \frac{1}{2} E_n l_n$,

(Flächeninhalte der Dreiecke in der E(x)-Verteilung)

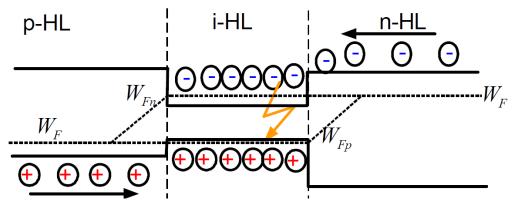
- 4) Wegen Ladungsneutralität gilt mit Gl. (6.28) und (6.29): $l_p = l_n n_D / n_A$
- 5) Einsetzen von 1) und 4) in 3) und ersetzen von l_n mittels 2):

$$\phi_{ges} = -\frac{1}{2} \frac{\varepsilon_n}{\varepsilon_p} E_n l_n \frac{n_D}{n_A} - \frac{1}{2} E_n l_n \rightarrow \phi_{ges} = \frac{1}{2} \frac{\left(\varepsilon_0 \varepsilon_n\right)^2}{e} E_n^2 \left(\frac{1}{n_A \varepsilon_0 \varepsilon_p} + \frac{1}{n_D \varepsilon_0 \varepsilon_n}\right)$$

Dies entspricht der Spannung U = 1.48 V des Flachbandfalls (**b**).

Die maximale Feldstärke beträgt somit:
$$E_{\text{max}} = \left| E_n \right| = \sqrt{\frac{2e\phi_{\text{ges}}}{\left(\varepsilon_0 \varepsilon_n \right)^2 \left(\frac{1}{n_A \, \varepsilon_0 \varepsilon_p} + \frac{1}{n_D \, \varepsilon_0 \varepsilon_n} \right)}} = 65.4 \frac{\text{kV}}{\text{cm}}$$

d) Technische Realisierungen von Halbleiterlasern beruhen fast ausschließlich auf Doppel-Heterostrukturen. Skizzieren Sie qualitativ den Bandverlauf einer Doppel-Heterostruktur im Flachbandfall und erläutern Sie die Vorteile gegenüber einer einfachen Heterostruktur.



Vorteile Doppelheterostruktur:

- Ladungsträgerinjektion in Potentialkasten
- Potentialbarrieren verhindern Diffusion der Träger aus dem aktiven Bereich
- Effiziente Lichterzeugung im gesamten intrinsischen Bereich
- Lichtleitung im intrinsischen Bereich möglich, wenn Brechungsindices $n_{int}>n_p$ und $n_{int}>n_n$

Aufgabe 2) Ersatzschaltbild einer pn-Diode

Eine p-n-Diode wird wie abgebildet betrieben. An der Diode fällt die Spannung $U_{\rm D}$ ab; der Gleichanteil der Spannung beträgt $U_{D,0}=0,7~{\rm V}$.

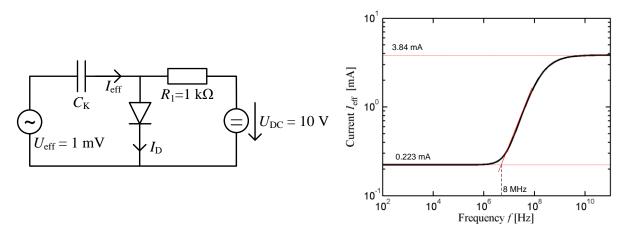
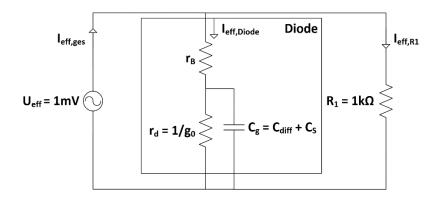


Fig. 1: Diode mit äußerer Beschaltung (links), Frequenzgang des Gesamtstroms (rechts). Die Frequenz, bei welcher der Strom um einen Faktor $\sqrt{2}$ angestiegen ist, liegt bei 8 MHz.

a) Zeichnen Sie die zugehörige Kleinsignal-Ersatzschaltung. Berücksichtigen Sie dabei den Bahnwiderstand R_b der Diode und fassen Sie die Sperrschichtkapazität und die Diffusionskapazität zu einer Gesamtkapazität $C_{\rm g}$ zusammen. Behandeln Sie die Kapazität $C_{\rm g}$ für alle betrachteten Frequenzen als Kurzschluss.

Lsg: Wird C_K durch einen Kurzschluss ersetzt und der Serien-Bahnwiderstand berücksichtigt, resultiert die Kleinsignalersatzschaltung zu:



b) Bestimmen Sie die Elemente der Kleinsignal-Ersatzschaltung der Diode (Bahnwiderstand, Kleinsignal-Leitwert, Gesamtkapazität) mit Hilfe des rechts skizzierten Frequenzganges des Effektivwerts $I_{\rm eff}$ des Kleinsignal-Wechselstroms. Nutzen Sie dabei die Tatsache, dass der Bahnwiderstand der Diode sehr klein ist im Vergleich zu den anderen Widerständen.

Lsg:

Der effektive Strom der durch den Widerstand R₁ fließt, ergibt sich zu $I_{eff} = \frac{U_{eff}}{R_1} = \frac{1mV}{1k\Omega} = 1\mu A$.

Bei geringen Frequenzen fließt also der Strom $I_{eff,Diode} = I_{eff,ges} - I_{eff,R1} = 222 \,\mu A$ durch die Reihenschaltung von r_B und $r_d = 1/g_0$ (näherungsweise fließt also kein Strom durch die Kapazität).

Daraus lässt sich nun der Gesamtwiderstand der Diode berechnen zu

$$r_b + r_d = \frac{U_{eff}}{I_{eff,ges(1)}} - \frac{U_{eff}}{R_1} = \frac{1mV}{222 \,\mu A} = 4.5\Omega$$

Bei hohen Frequenzen wird r_{d} durch C_{g} kurzgeschlossen. Durch r_{b} fließt nun der Strom

$$I_{eff,Diode} = 3.84 \text{ mA}$$
, sodass gilt: $r_b = \frac{U_{eff}}{I_{eff,ges(2)}} - \frac{U_{eff}}{R_1} = \frac{1 \text{ mV}}{3.84 \text{ mA}} = 0.26 \Omega$

Damit lässt sich der differentielle Widerstand r_d berechnen zu $r_d = 4.24 \Omega$.

Aus dem Frequenzgang des Gesamtstroms lässt sich herauslesen, dass der Strom bei 8 MHz um einen Faktor $\sqrt{2}$ ansteigt. Dies bedeutet, dass bei der Grenzfrequenz von 8 MHz $\omega C_g = g_0$,

bzw.
$$C_g = \frac{1}{2\pi \cdot 4.24 \cdot 0.8 \cdot 10^6 Hz} = 4.69 nF$$
 ist.